Empirical Wavelet Transform and Its Application in Fault Feature Extraction of Rolling Bearings

Author(s):  
Peng Yin ◽  
Xin Xiong
2019 ◽  
Vol 9 (9) ◽  
pp. 1876 ◽  
Author(s):  
Zheng Li ◽  
Anbo Ming ◽  
Wei Zhang ◽  
Tao Liu ◽  
Fulei Chu ◽  
...  

In order to extract and enhance the weak fault feature of rolling element bearings in strong noise conditions, the Empirical Wavelet Transform (EWT) is improved and a novel fault feature extraction and enhancement method is proposed by combining the Maximum Correlated Kurtosis Deconvolution (MCKD) and improved EWT method. At first, the MCKD method is conducted to de-noise the signal by eliminating the non-impact components. Then, the Fourier spectrum is segmented by local maxima or minima in the envelope of the amplitude spectrum with a pre-set threshold based on the noise level. By building up the wavelet filter banks based on the spectrum segmentation result, the signal is adaptively decomposed into several sub-signals. Finally, by choosing the most meaningful sub-signal with the maximum kurtosis, the fault feature can be extracted in the squared envelope spectrum and teager energy operator spectrum of the chosen component. Both simulations and experiments are performed to validate the effectiveness of the proposed method. It is shown that the spectrum segmentation result of improved EWT is more reasonable than the traditional EWT in strong noise conditions. Furthermore, compared with commonly used methods, such as the Fast Kurtogram (FK) and the Optimal Wavelet Packet Transform (OWPT) method, the proposed method is more effective in the fault feature extraction and enhancement of rolling element bearings.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 30437-30456 ◽  
Author(s):  
Yonggang Xu ◽  
Kun Zhang ◽  
Chaoyong Ma ◽  
Zhipeng Sheng ◽  
Hongchen Shen

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Long Zhang ◽  
Binghuan Cai ◽  
Guoliang Xiong ◽  
Jianmin Zhou ◽  
Wenbin Tu ◽  
...  

Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 86306-86318 ◽  
Author(s):  
Xin Huang ◽  
Guangrui Wen ◽  
Lin Liang ◽  
Zhifen Zhang ◽  
Yuan Tan

Sign in / Sign up

Export Citation Format

Share Document