singular value
Recently Published Documents


TOTAL DOCUMENTS

5205
(FIVE YEARS 1077)

H-INDEX

94
(FIVE YEARS 9)

Author(s):  
Rouhia Mohammed Sallam ◽  
Mahmoud Hussein ◽  
Hamdy M. Mousa

<span>Since data is available increasingly on the Internet, efforts are needed to develop and improve recommender systems to produce a list of possible favorite items. In this paper, we expand our work to enhance the accuracy of Arabic collaborative filtering by applying sentiment analysis to user reviews, we also addressed major problems of the current work by applying effective techniques to handle the scalability and sparsity problems. The proposed approach consists of two phases: the sentiment analysis and the recommendation phase. The sentiment analysis phase estimates sentiment scores using a special lexicon for the Arabic dataset. The item-based and singular value decomposition-based collaborative filtering are used in the second phase. Overall, our proposed approach improves the experiments’ results by reducing average of mean absolute and root mean squared errors using a large Arabic dataset consisting of 63,000 book reviews.</span>


2022 ◽  
Vol 8 ◽  
pp. 722-734
Author(s):  
Yan Cao ◽  
Ardashir Mohammadzadeh ◽  
Jafar Tavoosi ◽  
Saleh Mobayen ◽  
Rabia Safdar ◽  
...  

Geophysics ◽  
2022 ◽  
pp. 1-85
Author(s):  
Peng Lin ◽  
Suping Peng ◽  
Xiaoqin Cui ◽  
Wenfeng Du ◽  
Chuangjian Li

Seismic diffractions encoding subsurface small-scale geologic structures have great potential for high-resolution imaging of subwavelength information. Diffraction separation from the dominant reflected wavefields still plays a vital role because of the weak energy characteristics of the diffractions. Traditional rank-reduction methods based on the low-rank assumption of reflection events have been commonly used for diffraction separation. However, these methods using truncated singular-value decomposition (TSVD) suffer from the problem of reflection-rank selection by singular-value spectrum analysis, especially for complicated seismic data. In addition, the separation problem for the tangent wavefields of reflections and diffractions is challenging. To alleviate these limitations, we propose an effective diffraction separation strategy using an improved optimal rank-reduction method to remove the dependence on the reflection rank and improve the quality of separation results. The improved rank-reduction method adaptively determines the optimal singular values from the input signals by directly solving an optimization problem that minimizes the Frobenius-norm difference between the estimated and exact reflections instead of the TSVD operation. This improved method can effectively overcome the problem of reflection-rank estimation in the global and local rank-reduction methods and adjusts to the diversity and complexity of seismic data. The adaptive data-driven algorithms show good performance in terms of the trade-off between high-quality diffraction separation and reflection suppression for the optimal rank-reduction operation. Applications of the proposed strategy to synthetic and field examples demonstrate the superiority of diffraction separation in detecting and revealing subsurface small-scale geologic discontinuities and inhomogeneities.


J ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 15-34
Author(s):  
Ho-Sang Lee

A duststorm image has a reddish or yellowish color cast. Though a duststorm image and a hazy image are obtained using the same process, a hazy image has no color distortion as it has not been disturbed by particles, but a duststorm image has color distortion owing to an imbalance in the color channel, which is disturbed by sand particles. As a result, a duststorm image has a degraded color channel, which is rare in certain channels. Therefore, a color balance step is needed to enhance a duststorm image naturally. This study goes through two steps to improve a duststorm image. The first is a color balance step using singular value decomposition (SVD). The singular value shows the image’s diversity features such as contrast. A duststorm image has a distorted color channel and it has a different singular value on each color channel. In a low-contrast image, the singular value is low and vice versa. Therefore, if using the channel’s singular value, the color channels can be balanced. Because the color balanced image has a similar feature to the haze image, a dehazing step is needed to improve the balanced image. In general, the dark channel prior (DCP) is frequently applied in the dehazing step. However, the existing DCP method has a halo effect similar to an over-enhanced image due to a dark channel and a patch image. According to this point, this study proposes to adjustable DCP (ADCP). In the experiment results, the proposed method was superior to state-of-the-art methods both subjectively and objectively.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 186
Author(s):  
Yating Li ◽  
Yaqiang Wang

Based on the Schur complement, some upper bounds for the infinity norm of the inverse of generalized doubly strictly diagonally dominant matrices are obtained. In addition, it is shown that the new bound improves the previous bounds. Numerical examples are given to illustrate our results. By using the infinity norm bound, a lower bound for the smallest singular value is given.


Sign in / Sign up

Export Citation Format

Share Document