Using R, WEKA and RapidMiner in Time Series Analysis of Sensor Data for Structural Health Monitoring

Author(s):  
Hilda Kosorus ◽  
Jurgen Honigl ◽  
Josef Kung
2001 ◽  
Vol 123 (4) ◽  
pp. 706-711 ◽  
Author(s):  
Hoon Sohn ◽  
Charles R. Farrar ◽  
Norman F. Hunter ◽  
Keith Worden

This paper casts structural health monitoring in the context of a statistical pattern recognition paradigm. Two pattern recognition techniques based on time series analysis are applied to fiber optic strain gauge data obtained from two different structural conditions of a surface-effect fast patrol boat. The first technique is based on a two-stage time series analysis combining Auto-Regressive (AR) and Auto-Regressive with eXogenous inputs (ARX) prediction models. The second technique employs an outlier analysis with the Mahalanobis distance measure. The main objective is to extract features and construct a statistical model that distinguishes the signals recorded under the different structural conditions of the boat. These two techniques were successfully applied to the patrol boat data clearly distinguishing data sets obtained from different structural conditions.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6894
Author(s):  
Nicola-Ann Stevens ◽  
Myra Lydon ◽  
Adele H. Marshall ◽  
Su Taylor

Machine learning and statistical approaches have transformed the management of infrastructure systems such as water, energy and modern transport networks. Artificial Intelligence-based solutions allow asset owners to predict future performance and optimize maintenance routines through the use of historic performance and real-time sensor data. The industrial adoption of such methods has been limited in the management of bridges within aging transport networks. Predictive maintenance at bridge network level is particularly complex due to the considerable level of heterogeneity encompassed across various bridge types and functions. This paper reviews some of the main approaches in bridge predictive maintenance modeling and outlines the challenges in their adaptation to the future network-wide management of bridges. Survival analysis techniques have been successfully applied to predict outcomes from a homogenous data set, such as bridge deck condition. This paper considers the complexities of European road networks in terms of bridge type, function and age to present a novel application of survival analysis based on sparse data obtained from visual inspections. This research is focused on analyzing existing inspection information to establish data foundations, which will pave the way for big data utilization, and inform on key performance indicators for future network-wide structural health monitoring.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Eloi Figueiredo ◽  
Gyuhae Park ◽  
Kevin M. Farinholt ◽  
Charles R. Farrar ◽  
Jung-Ryul Lee

In this paper, time domain data from piezoelectric active-sensing techniques is utilized for structural health monitoring (SHM) applications. Piezoelectric transducers have been increasingly used in SHM because of their proven advantages. Especially, their ability to provide known repeatable inputs for active-sensing approaches to SHM makes the development of SHM signal processing algorithms more efficient and less susceptible to operational and environmental variability. However, to date, most of these techniques have been based on frequency domain analysis, such as impedance-based or high-frequency response functions-based SHM techniques. Even with Lamb wave propagations, most researchers adopt frequency domain or other analysis for damage-sensitive feature extraction. Therefore, this study investigates the use of a time-series predictive model which utilizes the data obtained from piezoelectric active-sensors. In particular, time series autoregressive models with exogenous inputs are implemented in order to extract damage-sensitive features from the measurements made by piezoelectric active-sensors. The test structure considered in this study is a composite plate, where several damage conditions were artificially imposed. The performance of this approach is compared to that of analysis based on frequency response functions and its capability for SHM is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document