predictive maintenance
Recently Published Documents


TOTAL DOCUMENTS

1651
(FIVE YEARS 870)

H-INDEX

40
(FIVE YEARS 13)

2022 ◽  
Vol 74 ◽  
pp. 102281
Author(s):  
Qiushi Cao ◽  
Cecilia Zanni-Merk ◽  
Ahmed Samet ◽  
Christoph Reich ◽  
François de Bertrand de Beuvron ◽  
...  

Author(s):  
Ahmed Nasser ◽  
Huthaifa AL-Khazraji

<p>Predictive maintenance (PdM) is a successful strategy used to reduce cost by minimizing the breakdown stoppages and production loss. The massive amount of data that results from the integration between the physical and digital systems of the production process makes it possible for deep learning (DL) algorithms to be applied and utilized for fault prediction and diagnosis. This paper presents a hybrid convolutional neural network based and long short-term memory network (CNN-LSTM) approach to a predictive maintenance problem. The proposed CNN-LSTM approach enhances the predictive accuracy and also reduces the complexity of the model. To evaluate the proposed model, two comparisons with regular LSTM and gradient boosting decision tree (GBDT) methods using a freely available dataset have been made. The PdM model based on CNN-LSTM method demonstrates better prediction accuracy compared to the regular LSTM, where the average F-Score increases form 93.34% in the case of regular LSTM to 97.48% for the proposed CNN-LSTM. Compared to the related works the proposed hybrid CNN-LSTM PdM approach achieved better results in term of accuracy.</p>


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 586
Author(s):  
Alberto Gascón ◽  
Roberto Casas ◽  
David Buldain ◽  
Álvaro Marco

Household appliances, climate control machines, vehicles, elevators, cash counting machines, etc., are complex machines with key contributions to the smart city. Those devices have limited memory and processing power, but they are not just actuators; they embed tens of sensors and actuators managed by several microcontrollers and microprocessors communicated by control buses. On the other hand, predictive maintenance and the capability of identifying failures to avoid greater damage of machines is becoming a topic of great relevance in Industry 4.0, and the large amount of data to be processed is a concern. This article proposes a layered methodology to enable complex machines with automatic fault detection or predictive maintenance. It presents a layered structure to perform the collection, filtering and extraction of indicators, along with their processing. The aim is to reduce the amount of data to work with, and to optimize them by generating indicators that concentrate the information provided by data. To test its applicability, a prototype of a cash counting machine has been used. With this prototype, different failure cases have been simulated by introducing defective elements. After the extraction of the indicators, using the Kullback–Liebler divergence, it has been possible to visualize the differences between the data associated with normal and failure operation. Subsequently, using a neural network, good results have been obtained, being able to correctly classify the failure in 90% of the cases. The result of this application demonstrates the proper functioning of the proposed approach in complex machines.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 613
Author(s):  
Pablo Venegas ◽  
Eugenio Ivorra ◽  
Mario Ortega ◽  
Idurre Sáez de Ocáriz

The maintenance of industrial equipment extends its useful life, improves its efficiency, reduces the number of failures, and increases the safety of its use. This study proposes a methodology to develop a predictive maintenance tool based on infrared thermographic measures capable of anticipating failures in industrial equipment. The thermal response of selected equipment in normal operation and in controlled induced anomalous operation was analyzed. The characterization of these situations enabled the development of a machine learning system capable of predicting malfunctions. Different options within the available conventional machine learning techniques were analyzed, assessed, and finally selected for electronic equipment maintenance activities. This study provides advances towards the robust application of machine learning combined with infrared thermography and augmented reality for maintenance applications of industrial equipment. The predictive maintenance system finally selected enables automatic quick hand-held thermal inspections using 3D object detection and a pose estimation algorithm, making predictions with an accuracy of 94% at an inference time of 0.006 s.


Sign in / Sign up

Export Citation Format

Share Document