scholarly journals Energy-efficient adaptive modulation in wireless communication for implanted medical devices

Author(s):  
Yinyue Qiu ◽  
David Haley ◽  
Ying Chen
2019 ◽  
Vol 15 (5) ◽  
pp. 155014771985197 ◽  
Author(s):  
Sabeen Tahir ◽  
Sheikh Tahir Bakhsh ◽  
Maysoon Abulkhair ◽  
Madini O Alassafi

In order to increase the reliability, accuracy, and efficiency in the eHealth, Internet of Medical Things is playing a vital role. Current development in telemedicine and the Internet of Things have delivered efficient and low-cost medical devices. The Internet of Medical Things architectures being developed do not completely recognize the potential of Internet of Things. The Internet of Medical Things sensor devices have limited computation power; in case if a patient is using implanted medical devices, it is not easy to recharge or replace the devices immediately. Biosensors are small devices with limited energy if these devices do not wisely utilize the energy may drain sharply and devices become inactive. The current medical solutions place the bulk of data on cloud-based systems that ultimately creates a bottleneck. In this article, an energy-efficient fog-to-cloud Internet of Medical Things architecture is proposed to optimize energy consumption. In the proposed architecture, Bluetooth enabled biosensors are used, because Bluetooth technology is an energy efficient and also helps to enable the sleep and awake modes. The proposed fog-to-cloud Internet of Medical Things works in three different modes periodic, sleep–awake, and continue to optimize the energy consumption. The proposed technique enabled the sensing modes that gathers the patients’ data efficiently based on their health conditions. The sensed data are transmitted to the relevant fog and cloud devices for further processing. The performance of fog-to-cloud Internet of Medical Things is evaluated through simulation; the results are compared with the results of existing techniques in terms of an end-to-end delay, throughput, and energy consumption. It is analyzed that the proposed technique reduces the energy consumption between 30% and 40%.


2021 ◽  
Vol 11 (12) ◽  
pp. 3123-3132
Author(s):  
M. Mailsamy ◽  
V. Rukkumani ◽  
K. Srinivasan

There have been significant advances in sensors and device structures in the medical industry, particularly in implanted medical devices. Increasingly complex electronic circuitry may now be implanted in the human body thanks to compact, high-energy batteries and hermetic packaging. These gadgets must adhere to strict power consumption guidelines due to the battery recharging schedule. Designing energy-efficient circuits and systems becomes increasingly important as a result of this fact. Adiabatic circuits provide a hopeful alternative for traditional circuitry in case of low energy design. Because of power-clock phases synchronization complexity, designing and functionally verifying presenting 4-phase adiabatic circuitry takes longer. Accordingly, multiple clock generators are used typically and can reveal enhanced consumption of energy in the network of clock distribution. Furthermore, they are not suitable for designing in high-speed because of their clock skew management and high complexity issues. In this paper, TMEL (True multi-phase energy recovering logic), the first energyrecovering/adiabatic logic family is presented for biomedical applications, which functions using the scheme multiple-phase sinusoidal clocking. Moreover, a system of SCAL, a source-coupled variation with TMEL having enhanced energy efficiency and supply voltage scalability, is introduced. A novel true multi-phase Approach and Source-coupled adiabatic logic for energy effective communication system is proposed. The adiabatic logic is employed for both write and read side operation. The CMOS inverter is integrated with TMEL cascades, which in turn reduces leakage loss. In SCAL, the optimal performance at any operating circumstance is attained byan adjustable current source in each gate. SCAL, and TMEL, are capable of outperforming existing adiabatic logic families concerning operating speed and energy efficiency. The performance analysis was carried and simulated through 45 nm CMOS inverter in terms of leakage power, delay, and power consumption. In particular, for the clock rates that range from 10 MHz to 200 MHz, the proposed SCAL was more energy-efficient and less dissipative on comparing their pipelined or purely combinational CMOS counterparts. In biomedical equipment, the system may be included into the low-power design since it is energy efficient and very robust. Improvements in VLSI technology, such as increased dynamic range, low-voltage EEPROMs (electrically eraseable programmable ROMs), and specific sensor techniques, are also expected to contribute to advancements in implanted medical devices in the near future.


Author(s):  
J.A. Nyenhuis ◽  
A.V. Kildishev ◽  
T.W. Athey ◽  
J.D. Bourland ◽  
K.S. Foster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document