A novel design method of anthropomorphic prosthetic hands for reproducing human hand grasping

Author(s):  
Baiyang Sun ◽  
Caihua Xiong ◽  
Wenrui Chen ◽  
Qiaofei Zhang ◽  
Liu Mao ◽  
...  
Author(s):  
Pei-Hsin Kuo ◽  
Jerod Hayes ◽  
Ashish D. Deshpande

Our long term goal is to develop a new generation of robotic-prosthetic hands that will incorporate key anatomical features of the human hand, especially, the passive dynamics defined by the joint stifftness and damping properties. This paper presents a design of a mechanism that can measure the passive moment of the human hand joint. We designed a motor-driven system, integrating a noninvasive and infrared motion capture system, that can control and record the angle, angular velocity and passive forces of the metacarpophalangeal (MCP) joint in the index finger. A total of 19 subjects participated in the experiments. We conducted two experiments to estimate the total passive moments of the MCP joint from the human subjects. The results showed that the novel design of the mechanism collected the precise passive moments and kinematic data, thus allowing us to develop a comprehensive understanding of the passive properties of the human hand joints.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110349
Author(s):  
Huiqiang Guo ◽  
Mingzhe Li ◽  
Pengfei Sun ◽  
Changfeng Zhao ◽  
Wenjie Zuo ◽  
...  

Rotary-wing unmanned aerial vehicles (UAVs) are widespread in both the military and civilian applications. However, there are still some problems for the UAV design such as the long design period, high manufacturing cost, and difficulty in maintenance. Therefore, this paper proposes a novel design method to obtain a lightweight and maintainable UAV frame from configurable design to detailed design. First, configurable design is implemented to determine the initial design domain of the UAV frame. Second, topology optimization method based on inertia relief theory is used to transform the initial geometric model into the UAV frame structure. Third, process design is considered to improve the manufacturability and maintainability of the UAV frame. Finally, dynamic drop test is used to validate the crashworthiness of the UAV frame. Therefore, a lightweight UAV frame structure composed of thin-walled parts can be obtained and the design period can be greatly reduced via the proposed method.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Erhan Yumuk ◽  
Müjde Güzelkaya ◽  
İbrahim Eksin

Abstract In this study, a novel design method for half-cycle and modified posicast controller structures is proposed for a class of the fractional order systems. In this method, all required design variable values, namely, the input step magnitudes and their application times are obtained as functions of fractional system parameters. Moreover, empirical formulas are obtained for the overshoot values of the compensated system with half-cycle and modified posicast controllers designed utilizing this method. The proposed design methodology has been tested via simulations and ball balancing real-time system. It is observed that the derived formulas are in coherence with outcomes of the simulation and real-time application. Furthermore, the performance of modified posicast controller designed using proposed method is much better than other posicast control method.


2018 ◽  
Vol 41 (6) ◽  
pp. 1761-1771 ◽  
Author(s):  
Baran Hekimoğlu

A novel design method, sine-cosine algorithm (SCA) is presented in this paper to determine optimum proportional-integral-derivative (PID) controller parameters of an automatic voltage regulator (AVR) system. The proposed approach is a simple yet effective algorithm that has balanced exploration and exploitation capabilities to search the solutions space effectively to find the best result. The simplicity of the algorithm provides fast and high-quality tuning of optimum PID controller parameters. The proposed SCA-PID controller is validated by using a time domain performance index. The proposed method was found efficient and robust in improving the transient response of AVR system compared with the PID controllers based on Ziegler-Nichols (ZN), differential evolution (DE), artificial bee colony (ABC) and bio-geography-based optimization (BBO) tuning methods.


2019 ◽  
Vol 29 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Chaoqun Niu ◽  
Xuchen Zhu ◽  
Qiuliang Wang ◽  
Yi Li ◽  
Fangfang Tang ◽  
...  
Keyword(s):  

Author(s):  
Fangzhou Hu ◽  
Chengchao Qi ◽  
Xiaohang Yu ◽  
Hongtao Zhao ◽  
Anbo Liu

Sign in / Sign up

Export Citation Format

Share Document