voltage regulator
Recently Published Documents


TOTAL DOCUMENTS

1828
(FIVE YEARS 357)

H-INDEX

43
(FIVE YEARS 5)

Author(s):  
Mini Puthenpurakkal Varghese ◽  
Ashwathnarayana Manjunatha ◽  
Thazhathu Veedu Snehaprabha

<p>Modern microprocessors in high-power applications require a low input voltage and a high input current, necessitating the use of multiphase buck converters. As per microprocessor computing complexity, the power requirements of the switching converter will also be more important and will be increasing as per load demand. Previous studies introduced some methods to achieve the advantages associated with multiphase regulators. This paper presents an effective closed closed-loop control scheme for multiphase buck converters that reduces ripple and improves transient response. It is suitable for applications that require regulated output voltage with effectively reduced ripple. The analysis began with a simulation of the entire design using the OrCAD tool, followed by the construction of a hardware setup. Experiments on a 200 Khz, 9 V, 12 A, 2-phase buck voltage regulator were conducted and the proposed experiment found to be useful.</p>


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 193
Author(s):  
Mohammad Arif Sobhan Bhuiyan ◽  
Md. Rownak Hossain ◽  
Khairun Nisa’ Minhad ◽  
Fahmida Haque ◽  
Mohammad Shahriar Khan Hemel ◽  
...  

Systems-on-Chip’s (SoC) design complexity demands a high-performance linear regulator architecture to maintain a stable operation for the efficient power management of today’s devices. Over the decades, the low-dropout (LDO) voltage regulator design has gained attention due to its design scalability with better performance in various application domains. Industry professionals as well as academia have put forward their innovations such as event-driven explicit time-coding, exponential-ratio array, switched RC bandgap reference circuit, etc., to make a trade-off between several performance parameters such as die area, ripple rejection, supply voltage range, and current efficiency. However, current LDO architectures in micro and nanometer complementary metal–oxide–semiconductor (CMOS) technology face some challenges, such as short channel effects, gate leakage, fabrication difficulty, and sensitivity to process variations at nanoscale. This review presents the LDO architectures, optimization techniques, and performance comparisons in different LDO design domains such as digital, analog, and hybrid. In this review, various state-of-the-art circuit topologies, deployed for the betterment of LDO performance and focusing on the specific parameter up-gradation to the overall improvement of the functionality, are framed, which will serve as a comparative study and reference for researchers.


Author(s):  
Tufan Dogruer ◽  
Mehmet Serhat Can

In this paper, a Fuzzy proportional–integral–derivative (Fuzzy PID) controller design is presented to improve the automatic voltage regulator (AVR) transient characteristics and increase the robustness of the AVR. Fuzzy PID controller parameters are determined by a genetic algorithm (GA)-based optimization method using a novel multi-objective function. The multi-objective function, which is important for tuning the controller parameters, obtains the optimal solution using the Integrated Time multiplied Absolute Error (ITAE) criterion and the peak value of the output response. The proposed method is tested on two AVR models with different parameters and compared with studies in the literature. It is observed that the proposed method improves the AVR transient response properties and is also robust to parameter changes.


2021 ◽  
Vol 18 (4) ◽  
pp. 1-27
Author(s):  
An Zou ◽  
Huifeng Zhu ◽  
Jingwen Leng ◽  
Xin He ◽  
Vijay Janapa Reddi ◽  
...  

Despite being employed in numerous efforts to improve power delivery efficiency, the integrated voltage regulator (IVR) approach has yet to be evaluated rigorously and quantitatively in a full power delivery system (PDS) setting. To fulfill this need, we present a system-level modeling and design space exploration framework called Ivory for IVR-assisted power delivery systems. Using a novel modeling methodology, it can accurately estimate power delivery efficiency, static performance characteristics, and dynamic transient responses under different load variations and external voltage/frequency scaling conditions. We validate the model over a wide range of IVR topologies with silicon measurement and SPICE simulation. Finally, we present two case studies using architecture-level performance and power simulators. The first case study focuses on optimal PDS design for multi-core systems, which achieves 8.6% power efficiency improvement over conventional off-chip voltage regulator module– (VRM) based PDS. The second case study explores the design tradeoffs for IVR-assisted PDSs in CPU and GPU systems with fast per-core dynamic voltage and frequency scaling (DVFS). We find 2 μs to be the optimal DVFS timescale, which not only reaps energy benefits (12.5% improvement in CPU and 50.0% improvement in GPU) but also avoids costly IVR overheads.


Author(s):  
Aleksey Shkolin

The issue of developing a behavioral model of pulse voltage converter IC is considered on the example of a microcircuit of domestic production 1290EF1. In order to verify the adequacy of the model, taking into account its frequency characteristics, recommendations and basic requirements are given when performing a full-scale and numerical experiment to determine the frequency characteristics of such type of nonlinear dynamic objects.


2021 ◽  
Vol 11 (24) ◽  
pp. 11944
Author(s):  
Naveed Ashraf ◽  
Ghulam Abbas ◽  
Nasim Ullah ◽  
Ali Nasser Alzaed ◽  
Ali Raza ◽  
...  

The problem of voltage sag and swell is one of the major reasons for low-quality power in the distribution system. Normally, it results from the system’s faults, including line-to-ground and line-to-line, non-linear characteristics of loads and sources. Its effect is very serious for the critical loads as their performance is very sensitive to the variation in voltage. The stabilization of voltage is a mandatory requirement in such a situation. The correction of such problems requires the addition and subtraction of the voltage once the line voltage is decreased and increased. This behavior of the correcting voltage is ensured by the use of voltage controllers that can convert a constant input voltage into a non-inverted and inverted variable form. Their voltage gains depend on the depth level of the problem. The voltage buck and boost capabilities of the AC voltage stabilizers can tackle the problems having any depth level. The smartness of such a system depends on the number of electronic devices as they are the key elements in the power conversion system. Therefore, this research proposes a new AC voltage controller with fewer solid-state devices. Its overall impact is low volume and cost. The validation of the introduced approach is ensured with the help of simulation modeling and results gained from the practical setup.


2021 ◽  
Vol 27 (6) ◽  
pp. 11-16
Author(s):  
Rahma Tabakh ◽  
Hasan Tiryaki

This paper proposes a novel Stability-Based Artificial Intelligence Method for predicting the optimum parameters of the proportional-integral-derivative controller in an automatic voltage regulator system. To implement the stability-based artificial intelligence method, first, parameters which are of great importance for the control of the system are applied to the system randomly, data are collected, and then artificial intelligence studies are carried out. The suggested approach has been applied to the system and compared with other control methods in the literature, namely the improved Kidney Inspired algorithm, Jaya algorithm, Tree Seed algorithm, Water Wave Optimization, and Biography-Based Optimization to test the robustness of the new method. The numerical results indicate that the proposed method significantly outperforms all other methods.


Sign in / Sign up

Export Citation Format

Share Document