RF characterization of low cost MCM-D substrates, manufactured on large area panels

Author(s):  
D. Cottet ◽  
M. Scheffler ◽  
J. Grzyb ◽  
B. Oswald ◽  
G. Troster
Keyword(s):  
Low Cost ◽  
Science ◽  
2020 ◽  
Vol 370 (6517) ◽  
pp. 698-701
Author(s):  
Canek Fuentes-Hernandez ◽  
Wen-Fang Chou ◽  
Talha M. Khan ◽  
Larissa Diniz ◽  
Julia Lukens ◽  
...  

Silicon photodiodes are the foundation of light-detection technology; yet their rigid structure and limited area scaling at low cost hamper their use in several emerging applications. A detailed methodology for the characterization of organic photodiodes based on polymeric bulk heterojunctions reveals the influence that charge-collecting electrodes have on the electronic noise at low frequency. The performance of optimized organic photodiodes is found to rival that of low-noise silicon photodiodes in all metrics within the visible spectral range, except response time, which is still video-rate compatible. Solution-processed organic photodiodes offer several design opportunities exemplified in a biometric monitoring application that uses ring-shaped, large-area, flexible, organic photodiodes with silicon-level performance.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 99
Author(s):  
Htoo Nay Wunn ◽  
Shinichi Motoda ◽  
Motoaki Morita

One of the effective ways of utilizing marine environments is to generate energy, power, and hydrogen via the effect of photocatalysts in the seawater. Since the ocean is vast, we are able to use its large area, but the power generation system must be of low cost and have high durability against both force and corrosion. In order to meet those requirements, this study focuses on the fabrication of a novel marine wet solar cell composed of a titanium dioxide photoanode and a copper oxide photocathode. These electrodes were deposited on type 329J4L stainless steel, which possesses relative durability in marine environments. This study focuses on the characterization of the photocatalytic properties of electrodes in seawater. Low-cost manufacturing processes of screen-printing and vacuum vapor deposition were applied to produce the titanium dioxide and copper oxides electrodes, respectively. We investigated the photopotential of the electrodes, along with the electrochemical properties and cell voltage properties of the cell. X-ray diffraction spectroscopy (XRD) of the copper oxides electrode was analyzed in association with the loss of photocatalytic effect in the copper oxides electrode. Although the conversion efficiency of the wet cell was less than 1%, it showed promising potential for use in marine environments with low-cost production. Electrochemical impedance spectroscopy (EIS) of the cell was also conducted, from which impedance values regarding the electrical properties of electrodes and their interfaces of charge-transfer processes were obtained. This study focuses on the early phase of the marine wet solar cell, which should be further studied for long-term stability and in actual marine environmental applications.


2013 ◽  
Vol 1538 ◽  
pp. 115-121
Author(s):  
Sandip Das ◽  
Kelvin J. Zavalla ◽  
M. A. Mannan ◽  
Krishna C Mandal

ABSTRACTLarge-area Cu2ZnSnS4 (CZTS) thin films were deposited by low-cost spray pyrolysis technique on Mo-coated soda-lime glass (SLG) substrates at varied substrate temperatures of 563-703°K. Deposition conditions were optimized to obtain best quality films and effect of post deposition thermal processing of the as-deposited films under H2S ambient were investigated. Structural, morphological, and compositional characterization of as-deposited and H2S treated CZTS absorber layers were carried out by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX). Optical and electrical properties were measured by UV-Vis spectroscopy, van der Pauw, and Hall-effect measurements. Films grown at ∼360°C substrate temperature showed superior optoelectronic properties, improved stoichiometry and smoother morphology compared to films grown at much higher or lower temperatures. Film properties were significantly improved after the H2S processing. Our results show that large area high quality CZTS films can be fabricated by low-cost spray pyrolysis technique for high throughput commercial production of CZTS based heterojunction solar cells.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


2006 ◽  
Vol 90 (20) ◽  
pp. 3557-3567 ◽  
Author(s):  
U. Gangopadhyay ◽  
K.H. Kim ◽  
S.K. Dhungel ◽  
U. Manna ◽  
P.K. Basu ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 140
Author(s):  
Lichen Liu ◽  
Ziping Cao ◽  
Min Chen ◽  
Jun Jiang

This paper reports the fabrication and characterization of (Bi0.48Sb1.52)Te3 thick films using a tape casting process on glass substrates. A slurry of thermoelectric (Bi0.48Sb1.52)Te3 was developed and cured thick films were annealed in a vacuum chamber at 500–600 °C. The microstructure of these films was analyzed, and the Seebeck coefficient and electric conductivity were tested. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of these samples. Conductive films were obtained after annealing and led to acceptable thermoelectric performance. While the properties of these initial materials are not at the level of bulk materials, this work demonstrates that the low-cost tape casting technology is promising for fabricating thermoelectric modules for energy conversion.


Sign in / Sign up

Export Citation Format

Share Document