Author(s):  
Yi Liu ◽  
Taghi M. Khoshgoftaar

A software quality estimation model is an important tool for a given software quality assurance initiative. Software quality classification models can be used to indicate which program modules are fault-prone (FP) and not fault-prone (NFP). Such models assume that enough resources are available for quality improvement of all the modules predicted as FP. In conjunction with a software quality classification model, a quality-based ranking of program modules has practical benefits since priority can be given to modules that are more FP. However, such a ranking cannot be achieved by traditional classification techniques. We present a novel software quality classification model based on multi-objective optimization with genetic programming (GP). More specifically, the GP-based model provides both a classification (FP or NFP) and a quality-based ranking for the program modules. The quality factor used to rank the modules is typically the number of faults or defects associated with a module. Genetic programming is ideally suited for optimizing multiple criteria simultaneously. In our study, three performance criteria are used to evolve a GP-based software quality model: classification performance, module ranking, and size of the GP tree. The third criterion addresses a commonly observed phenomena in GP,that is, bloating. The proposed model is investigated with case studies of software measurement data obtained from two industrial software systems.


2007 ◽  
Vol 21 (2) ◽  
pp. 266-272 ◽  
Author(s):  
C. Sivapragasam ◽  
P. Vincent ◽  
G. Vasudevan

2007 ◽  
Vol 44 (12) ◽  
pp. 1462-1473 ◽  
Author(s):  
Mohammad Rezania ◽  
Akbar A. Javadi

In this paper, a new genetic programming (GP) approach for predicting settlement of shallow foundations is presented. The GP model is developed and verified using a large database of standard penetration test (SPT) based case histories that involve measured settlements of shallow foundations. The results of the developed GP model are compared with those of a number of commonly used traditional methods and artificial neural network (ANN) based models. It is shown that the GP model is able to learn, with a very high accuracy, the complex relationship between foundation settlement and its contributing factors, and render this knowledge in the form of a function. The attained function can be used to generalize the learning and apply it to predict settlement of foundations for new cases not used in the development of the model. The advantages of the proposed GP model over the conventional and ANN based models are highlighted.


Author(s):  
César L. Alonso ◽  
José Luis Montaña ◽  
Cruz Enrique Borges

Sign in / Sign up

Export Citation Format

Share Document