A self-organizing and self-tuning fuzzy logic controller for field oriented control of induction motor drives

Author(s):  
F. Ashrafzadeh ◽  
E.P. Nowicki ◽  
J.C. Salmon
Author(s):  
Nabil Farah ◽  
M. H. N. Talib ◽  
Z. Ibrahim ◽  
J. M. Lazi ◽  
Maaspaliza Azri

<span>Fuzzy logic controller has been the main focus for many researchers and industries in motor drives. The popularity of Fuzzy Logic Controller (FLC) is due to its reliability and ability to handle parameters changes during load or disturbance. Fuzzy logic design can be visualized in two categories, mamdani design or Takagi-Sugeno (TS). Mamdani type can facilitate the design process, however it require high computational burden especially with big number of rules and experimental testing. This paper, develop Self-Tuning (ST) mechanism based on Takagi-Sugeno (TS) fuzzy type. The mechanism tunes the input scaling factor of speed fuzzy control of Induction Motor (IM) drives Based on the speed error and changes of error. A comparison study is done between the standard TS and the ST-TS based on simulations approaches considering different speed operations. Speed response characteristics such as rise time, overshoot, and settling time are compared for ST-TS and TS. It was shown that ST-TS has optimum results compared to the standard TS. The significance of the proposed method is that, optimum computational burden reduction is achieved.</span>


2015 ◽  
Vol 16 (2) ◽  
pp. 272
Author(s):  
Marizan Sulaiman ◽  
Zulhisyam Salleh ◽  
Rosli Omar

This paper presents the effects of parameters variation over the speed response of vector controlled induction motor drives for high performance applications. The design and simulation of fuzzy logic controller are considered based on design case constant parameter fuzzy logic (DCCPFL) controller. The scaling factors for DCCPFL controller are calculated based on identified motor parameter. The performance of the DCCPFL is compared with conventional PI controller. Three different parameters is tested under no-load and loaded conditions namely rotor resistance, inertia and self-inductance. From the simulation results, it is proved that the DCCPFL have better performance in term of different parameter variations and also load disturbances. Thus the DCCPFL is appropriate to replace the conventional PI for high performance of induction motor drives system.


Sign in / Sign up

Export Citation Format

Share Document