A novel multi-carrier waveform with high spectral efficiency: Semi-orthogonal frequency division multiplexing

Author(s):  
Fan Yang ◽  
Xin Wang

Significant wireless broadband technology used in various cellular standards is Orthogonal Frequency Division Multiplexing (OFDM) which will make use of Multi Carrier Modulated (MCM) systems. Even though OFDM has numerous advantages, it is hard to employ OFDM for complex networks. It is very hard to establish synchronization in mobile environments as it is difficult to predict the Doppler shifts of different users, which results in inter carrier interference (ICI). Further, filters associated with OFDM carrier have comparatively large sidebands which outcomes in Out of Band (OOB) radiations. Insufficient spectral usage is provided by CP-OFDM by using more guard band. So the problems caused by traditional OFDM/CP-OFDM can be answered by employing a new system termed as Filter Bank Multi Carrier (FBMC) System. It is a form of MCM and it can be considered as an advanced cyclic-prefix (CP-OFDM). In OFDM, whole band gets filtered while in FBMC, each sub carrier band is independently filtered. The primary objective of this work is to relate the performance of 5G modulation technique such as FBMC against OFDM and to suggest an ideal waveform for 5G communication in regard to high spectral efficiency, spectral density, BER and less Peak to Average Power Ratio (PAPR).


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Shangfei Qiu ◽  
Lunsheng Xue ◽  
Peng Wu

To the significant amount of pilot overhead of the interference cancelation methods in orthogonal frequency division multiplexing (OFDM) based on offset quadrature amplitude modulation (OFDM/OQAM) system, we proposed an improved interference cancelation method (ICM) for OFDM/OQAM system in this paper. In this method, we use the auxiliary pilot (AP) to eliminate the influence of the intersymbol interference on channel estimation, which can reduce the pilot overhead of OFDM/OQAM system significantly. At the same time, to improve the channel estimation performance, we analyze the source of the intrinsic interference of system and its distribution in time and frequency domain, then, we reset the interference cancelation range of AP, which can cancel more intrinsic interference for OFDM/OQAM system. According to the results of performance analysis, compared to the conventional interference cancelation methods, the proposed method performs better in terms of energy efficiency and spectral efficiency. Also, the simulation results of the proposed method show that the proposed method can outperform traditional interference cancelation methods in channel estimation performance.


2021 ◽  
Vol 20 (5) ◽  
pp. 279-287
Author(s):  
C.H. Pallavi ◽  
G. Sreenivasulu

For efficient underwater opto/acoustic communication, this research proposes the use of MIMO in conjunction with OFDM. OFDM (Orthogonal Frequency-Division Multiplexing) and MIMO (Multiple Input Multiple Output) systems may be widely used in wireless networks to provide high data transfer rates, resistance to multipath fading, and an increase in the channel's Spatial Multiplexing and Spatial Diversity Gain. Transmission speed can be increased by altering bandwidth or spectral efficiency (or both) in wireless data transmission systems. Systems that use Multi-Input Multi-Output (MIMO) technologies have the potential to improve spectral efficiency by employing several transmitters and receivers in tandem. To maximize spectrum efficiency and minimize inter-symbol interference, Orthogonal Frequency Division Multiplexing (OFDM) divides signals into a number of narrow band channels (ISI). In other words, combining the benefits of MIMO with OFDM will boost spectral efficiency while also increasing the link's dependability and spectral gain. MIMO and OFDM approaches are integrated in this research to increase opto-acoustic modem performance. MATLAB Simulink tool was used to design and simulate the proposed hybrid opto-acoustic modem with MIMO-OFDM for optical and acoustic (EM) signal transmission and reception. The simulation results verify the viability of the proposed method, and the measured bit-error rate (BER) for acoustic (EM) signal is 0.4958 and optical signal is 0.5101. The overall bandwidth of the system is from -150 MHz to +150 MHz.


Orthogonal Frequency Division Multiplexing is one of the most important multiple carrier modulation format, which has many applications in wireless communication and optical communication. It is considered as an excellent method for fast optical communication inferable from its high spectral efficiency and its strength to path losses. Peak to average power ratio is regarded as one of the main problems that are experienced by the optical orthogonal frequency division multiplexing system, which directly affects the characteristics of the system. The current paper proposes an efficient technique to reduce Peak to Average Power Ratio by the modified Dursun’s method or the so called modified discrete sliding norm transformer in coherent optical orthogonal frequency division multiplexing system for the first time to the base of our knowledge consequently. The proposed technique does not need to send side information to the receiver; also, it does not degrade bandwidth. This algorithm lessens Peak to Average Power Ratio in the optical coherent Orthogonal Frequency Division Multiplexing system to about 4.15 dB at complementary cumulative distribution function (CCDF) probability of 10-3 and improves the system performance.


2021 ◽  
Vol 10 (4) ◽  
pp. 2079-2087
Author(s):  
Ammar A. Sahrab ◽  
Alaa Doohee Yaseen

Wireless communications became an integrated part of the human life. Fifth generation (5G) is the modern communication which provides enhanced mobile broadband (eMBB), ultra reliable low latency communications (URLLC), and massive machine type communication (mMTC). Thus, 5G have to provide coverage to multi-numerology devices, therefore, modulation and access schemes are suggested in the literature such as cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) and filtered OFDM (f-OFDM). CP-OFDM suffers from the high out of band emission which limited the multi-numerology applications. In f-OFDM, the out of band emission can be suppressed to an accepted extent such that different numerologies can be coexisting. On the other hand, f-OFDM can be more improved by using a proper filtering approach. In this paper three different filters are suggested based windowed-sinc function; Hanning, Hamming, and Blackman. Simulation results show that the proposed filters are promising for high spectral efficiency and out of band emission rejection. Furthermore, the bit error rate, error vector magnitude, and power spectral density are further improved with respect to CP-OFDM scheme but some trade-off is present. Overall, the suggested windowed-sinc filters are outperforming the traditional CP-OFDM. As a conclusion, the suggested windnowed-sinc filters have no limitations on the modulation order or the number of subcarriers utilized in the system.


Author(s):  
Arthur James Lowery

This paper charts the development of spectrally efficient forms of optical orthogonal frequency division multiplexing (OFDM) that are suited for intensity-modulated direct detection systems, such as wireless optical communications. The journey begins with systems using a DC-bias to ensure that no parts of the signal that modulates the optical source are negative in value, as negative optical intensity is unphysical. As the DC-part of the optical signal carries no information, it is wasteful in energy; thus asymmetrically clipped optical OFDM was developed, removing any negative-going peaks below the mean. Unfortunately, the clipping causes second-order distortion and intermodulation, so some subcarriers appear to be unusable, halving spectral efficiency; this is similar for unipolar and flipped optical OFDM. Thus, a considerable effort has been made to regain spectral efficiency, using layered techniques where the clipping distortion is mostly cancelled at the receiver, from a knowledge of one unpolluted layer, enabling one or more extra ‘layers/paths/depths’ to be received on the previously unusable subcarriers. Importantly, for a given optical power and high-order modulation, layered methods offer the best spectral efficiencies and need the lowest signal-to-noise ratios, especially if diversity combining is used. Thus, they could be important for high-bandwidth optical fibre systems. Efficient methods of generating all layers simultaneously, using fast Fourier transforms with their partial calculations extracted, are discussed, as are experimental demonstrations in both wireless and short-haul communications links. A musical analogy is also provided, which may point to how orchestral and rock music is deciphered in the brain. This article is part of the theme issue ‘Optical wireless communication’.


Sign in / Sign up

Export Citation Format

Share Document