A High Speed Underwater Wireless Communication Through a Novel Hybrid Opto-Acoustic Modem Using MIMO-OFDM
For efficient underwater opto/acoustic communication, this research proposes the use of MIMO in conjunction with OFDM. OFDM (Orthogonal Frequency-Division Multiplexing) and MIMO (Multiple Input Multiple Output) systems may be widely used in wireless networks to provide high data transfer rates, resistance to multipath fading, and an increase in the channel's Spatial Multiplexing and Spatial Diversity Gain. Transmission speed can be increased by altering bandwidth or spectral efficiency (or both) in wireless data transmission systems. Systems that use Multi-Input Multi-Output (MIMO) technologies have the potential to improve spectral efficiency by employing several transmitters and receivers in tandem. To maximize spectrum efficiency and minimize inter-symbol interference, Orthogonal Frequency Division Multiplexing (OFDM) divides signals into a number of narrow band channels (ISI). In other words, combining the benefits of MIMO with OFDM will boost spectral efficiency while also increasing the link's dependability and spectral gain. MIMO and OFDM approaches are integrated in this research to increase opto-acoustic modem performance. MATLAB Simulink tool was used to design and simulate the proposed hybrid opto-acoustic modem with MIMO-OFDM for optical and acoustic (EM) signal transmission and reception. The simulation results verify the viability of the proposed method, and the measured bit-error rate (BER) for acoustic (EM) signal is 0.4958 and optical signal is 0.5101. The overall bandwidth of the system is from -150 MHz to +150 MHz.