Feasibility to adapt modifications in the extant Turbojet engine test bed for the ground test run of Turbofan engine

Author(s):  
Nasar A. Mubarak ◽  
Syed O. Farooq ◽  
Haris A. Khan
2014 ◽  
Vol 983 ◽  
pp. 374-378
Author(s):  
Fawwad Ahmed ◽  
Ahmad Aizaz ◽  
Zahid Mahmood

The existing Universal Test Bed (UTB) is a facility to ground test Turbojet Engines before installation on the aircraft. This work provides a feasibility study to adapt changes to this UTB for the Turbofan Engine. Necessary design modification of existing UTB is performed by applying propulsive and structural analysis for the adaptation of Turbofan engine. Physical measurements of the UTB and the mounts of Turbofan Engine reveal their mutual compatibility. Based on these measurements, six different CAD models are generated in Solid Works® and analyzed in ANSYS® Workbench. After grid independence check, validation of the model with applied loads and the boundary conditions was done through comparison of analytical calculations with those of a simplified CAD model. Based on minimum stress vis-à-vis maximum Factor of Safety (FOS), the best design is finally selected through this research.


2003 ◽  
Vol 16 (3) ◽  
pp. 138-141
Author(s):  
Wen-feng LI ◽  
Yong-sheng WANG
Keyword(s):  
Test Bed ◽  

2018 ◽  
Vol 47 (5) ◽  
pp. 3059-3059 ◽  
Author(s):  
Jerzy Merkisz ◽  
Pawel Fuc ◽  
Piotr Lijewski ◽  
Andrzej Ziolkowski ◽  
Krzysztof T. Wojciechowski

Author(s):  
Dustin J. Frohnapfel ◽  
K. Todd Lowe ◽  
Walter F. O’Brien

Abstract Over the last decade, the Turbomachinery and Propulsion Research Laboratory at Virginia Tech has researched, invented, developed, computationally analyzed, experimentally tested, and improved turbofan engine inlet distortion generators. This effort began with modernizing and improving inlet total pressure distortion screens originally conceived over half a century ago; continued with the invention of inlet swirl distortion generators (StreamVanes™) made possible only through advances in modern additive manufacturing technology; and has, thus far, culminated in a novel combined device (ScreenVanes™) capable of simulating realistic flight conditions of coupled inlet total pressure and swirl distortion in a ground-test turbofan engine research platform. The present research focuses on the methodology development, computational analysis, and experimental validation of a novel simultaneous inlet total pressure and swirl distortion generator. A case study involving a single bend S-duct inlet distortion profile demonstrates the ability to generate a high-fidelity profile simulation, yet outlines a design process sufficiently generic for application to any arbitrary inlet geometry or distortion profile. A computational fluid dynamics simulation of the S-duct inlet provided the target profile extracted at the aerodynamic interface plane. Next, utilizing a method of inverse propagation, the planar distortion profile was propagated upstream to yield a flow field that could be manufactured by a distortion generator adequately isolated from turbomachinery effects. The total pressure distortion screen and swirl distortion StreamVane components were then designed and computationally analyzed. Upon successful computational reproduction of the S-duct inlet distortion profile, experimental hardware was fabricated and tested to validate the ScreenVane methodology and distortion generating device. Comparison of the S-duct manufactured distortion and the ScreenVane manufactured distortion was used as the primary criterion for profile replication success. Results from a computational analysis of both the S-duct and ScreenVane indicated excellent agreement in distortion pattern shape, extent, and intensity with full-field total pressure recovery and swirl angle profiles matching within approximately 0.80% and 2.6°, respectively. Furthermore, experimental validation of the ScreenVane indicated nearly identical full-field total pressure recovery and swirl angle profile replication of approximately 1.10% and 2.6°, respectively, when compared to the computational results. The investigation concluded that not only was the ScreenVane device capable of accurately simulating a complex inlet distortion profile, but also produced a viable device for full-scale turbofan engine ground test.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3478 ◽  
Author(s):  
Tomasz Skrzek ◽  
Mirosław Rucki ◽  
Krzysztof Górski ◽  
Jonas Matijošius ◽  
Dalibor Barta ◽  
...  

This paper addresses the issue of metrological accuracy of instantaneous in-cylinder pressure measurement in a diesel engine test bed. In studies, the central unit has been the single-cylinder AVL 5402 engine. The pressure measurement was performed with a sensor designed for thermodynamic analysis, and the results were related to the crank angle, where two rotations corresponding to the four-stroke working cycle were denoted as angles between −360° and +360°. The novelty of this paper is the proposition of how to perform a type A uncertainty estimation of the in-cylinder pressure measurement and to assess its repeatability. It was demonstrated that repeatability of the measurement during the ignition process was difficult to estimate because of the phenomena that cannot ensure the repeatability conditions. To solve the problem, two methods were proposed. In one method, the pressure was measured in the subsequent cycles immediately after the ignition was turned off, and in another method, the engine was driven by a starter. The latter method provided maximal pressure values much lower than during usual tests. The obtained repeatability of measured pressure was %EV = 0.4%, which proved high capability of the evaluated measurement system.


1973 ◽  
Vol 95 (4) ◽  
pp. 1039-1047 ◽  
Author(s):  
H. Fine ◽  
J. Quadrini ◽  
S. Ollendorf

The Orbiting Astronomical Observatory (OAO)-C was successfully launched into 400-nautical mile circular orbit on August 21, 1972. For this spacecraft, a unique sensitivity approach to the thermal design was developed which resulted in a predictal design—the merits of which should be considered for application on future spacecra. The OAO-C is also serving as a test bed for the evaluation of thermal control hardware. To provide flight data for space program applications, experiments for a new coating and four different heat pipe designs are on this spacecraft. The data derived from OAO-C will be extremely valuable for such future programs as the Large Space Telescope (LST) and the Earth Observation Satellite (EOS). This paper will describe the detailed of the sensitivity design approach and thermal control hardware. For all aspects discussed, a comparison of pertinent analysis, ground test data, and flight data [1] will be given.


Author(s):  
Jingjing Huang ◽  
Longxi Zheng

Aerogine noise leads to environment pollution largely when aerogine is tested. In this paper, the power spectrum analysis method of the aeroengine test noise was discussed, and the noise measurement and analysis experiments of a turbojet engine and a turbofan engine tests were carried out. The noise level, main noise resource, and noise characteristics of the two turbojet and turbofan engines were analyzed. Meanwhile, the indoor noise and far-field noise of the turbojet engine were both measured, the noise spread characteristics were analyzed and the noise reduction performance of the test bench was evaluated. The noise generated by the turbojet engine test had the discrete characteristic of high frequency. The higher frequencies when peak values occurred were the blade passage frequencies and the noises with lower frequencies were the broad band noises, especially the jet noise, and the maximum of the peak values occurred at the basic frequencies or harmonic frequencies of the compressor. Meanwhile, the noises generated by the turbofan engine, focused on the high frequencies and the peak values corresponded to the rotation noise of the fan blades. The experimental results were consistent with the theory basically, which indicated that the aeroengine operating status information could be identified by the noise power spectrum analysis. In addition to the aeroengine noise reduction research, the noise power spectrum analysis could also be used to diagnose the fault of the aeroengine structure and performance. On the other hand, the indoor and far-field noise measurement experimental results implied that the noise was suppressed from 136 dB to 85 dB and could provide the reference to the noise reduction design of the aeroengine test bench.


Author(s):  
Raza Samar ◽  
Ian Postlethwaite

In this paper, a 2 degrees-of-freedom multimode controller design for the Rolls Royce Spey turbofan engine is presented. The controller is designed via discrete time H∞-optimization; it provides robust stability against coprime factor uncertainty, and a degree of robust performance in the sense of making the closed-loop system match a prespecified reference model. Multimode control logic is developed to preserve structural integrity of the engine by limiting engine variables to specified safe values. A simple strategy for antiwindup and bumpless transfer between controllers, based on the Hanus anti-windup scheme (1987, “Conditioning Technique, A General Anti-Windup and Bumpless Transfer Method,” Automatica, 23(6), pp. 729–739) and the observer-based structure of the controller, is presented. The structure of the overall switched controller is described. Actual engine test results using the Spey engine test facility at Pyestock are presented. The controller is shown to perform a variety of tasks, its multimode operation is illustrated and improvements offered on existing engine control systems are discussed.


MTZ worldwide ◽  
2006 ◽  
Vol 67 (7-8) ◽  
pp. 29-32
Author(s):  
Gerald Gaberscik ◽  
Rudolf Gurtner ◽  
Werner Tripolt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document