Musical noise generation analysis for noise reduction methods based on spectral subtraction and MMSE STSA estimation

Author(s):  
Yoshihisa Uemura ◽  
Yu Takahashi ◽  
Hiroshi Saruwatari ◽  
Kiyohiro Shikano ◽  
Kazunobu Kondo
Author(s):  
M. J. Benzakein ◽  
S. B. Kazin

A study of various fan/compressor noise reduction methods is presented. The analytical treatment of the basic mechanisms of fan/compressor noise generation is described. The results are presented in parametric form and indicate the effects of fan/compressor design, number of blades, vane/blade ratio, aerodynamic parameters, and blade row spacing on pure tone noise reduction. These results are based on nonsteady aerodynamic treatment of wake and potential interaction effects and theoretical extensions of spinning mode theories.


Author(s):  
Isiaka Ajewale Alimi

Digital hearing aids addresses the issues of noise and speech intelligibility that is associated with the analogue types. One of the main functions of the digital signal processor (DSP) of digital hearing aid systems is noise reduction which can be achieved by speech enhancement algorithms which in turn improve system performance and flexibility. However, studies have shown that the quality of experience (QoE) with some of the current hearing aids is not up to expectation in a noisy environment due to interfering sound, background noise and reverberation. It is also suggested that noise reduction features of the DSP can be further improved accordingly. Recently, we proposed an adaptive spectral subtraction algorithm to enhance the performance of communication systems and address the issue of associated musical noise generated by the conventional spectral subtraction algorithm. The effectiveness of the algorithm has been confirmed by different objective and subjective evaluations. In this study, an adaptive spectral subtraction algorithm is implemented using the noise-estimation algorithm for highly non-stationary noisy environments instead of the voice activity detection (VAD) employed in our previous work due to its effectiveness. Also, signal to residual spectrum ratio (SR) is implemented in order to control the amplification distortion for speech intelligibility improvement. The results show that the proposed scheme gives comparatively better performance and can be easily employed in digital hearing aid system for improving speech quality and intelligibility.


1971 ◽  
Vol 37 (293) ◽  
pp. 203-211
Author(s):  
Aizoh KUBO ◽  
Toshiaki ANDO ◽  
Susumu SATO ◽  
Toshio AIDA ◽  
Takeshi HOSHIRO

2020 ◽  
Vol 4 (67) ◽  
pp. 153-160
Author(s):  
Oleg I. Polivaev ◽  
◽  
Alexey N. Kuznetsov ◽  
Dmitriy Yu. Terekhov ◽  
Viktor V. Trufanov ◽  
...  

Author(s):  
Wei Huang ◽  
Radovan Kovacevic

During the laser welding process of high-strength steels, different defects, such as a partial weld penetration, spatters, and blow-through holes could be present. In order to detect the presence of defects and achieve a quality control, acoustic monitoring based on microphones is applied to the welding process. As an effective sensor to monitor the laser welding process, however, the microphone is greatly limited by intensive noise existing in the complex industrial environment. In this paper, in order to acquire a clean acoustic signal from the laser welding process, two noise reduction methods are proposed: one is the spectral subtraction method based on one microphone and the other one is the beamforming based on a microphone array. By applying these two noise reduction methods, the quality of the acoustic signal is enhanced, and the acoustic signatures are extracted both in the time domain and frequency domain. The analysis results show that the extracted acoustic signatures can well indicate the different weld penetration states and they can also be used to study the internal mechanisms of the laser-material interaction.


2008 ◽  
Vol 25 (3) ◽  
pp. 452-463 ◽  
Author(s):  
D. Hurther ◽  
U. Lemmin

Abstract A novel noise reduction method and corresponding technique are presented for improving turbulence measurements with acoustic Doppler velocimeters (ADVs) commonly used in field studies of coastal and nearshore regions, rivers, lakes, and estuaries. This bifrequency method is based on the decorrelation of the random and statistically independent Doppler noise terms contained in the Doppler signals at two frequencies. It is shown through experiments in an oscillating grid turbulence (OGT) tank producing diffusive isotropic turbulence that a shift in carrier frequency of less than 10% is sufficient to increase the resolved frequency range by a decade in the turbulent velocity spectra. Over this spectral range, the slope of the velocity spectra agrees well with the universal inertial range value of −5/3. The limit due to spatial averaging effects over the sample volume can be determined from the abrupt deviation of the spectral slope from the −5/3 value. As a result, the relative error of the turbulent intensity estimate and the turbulent kinetic energy (TKE) dissipation rate, measured by two different methods, does not exceed 10% in the case of isotropic turbulence. Furthermore, the bifrequency method allows accurate estimates of the turbulent microscales as shown by the good agreement of the ratio between the Taylor and Kolmogorov microscales and an Re1/4t power law. Compared to previous Doppler noise reduction methods (Garbini et al.), an increase in time resolution by a factor of 4 is achieved. The proposed method also avoids the loss of TKE energy contained in isotropic flow structures of size equal to and smaller than the sample volume. Different from Doppler noise methods proposed by Hurther and Lemmin and Blanckaert and Lemmin, this method does not require additional hardware components, electronic circuitry, or sensors because the redundant instantaneous velocity field information is captured with the same transducer. The required shift in carrier frequency is small enough for the bifrequency method to be easily implemented in commercial ADVs.


2020 ◽  
Vol 52 (1) ◽  
pp. 395-420 ◽  
Author(s):  
Justin W. Jaworski ◽  
N. Peake

The ability of some species of owl to fly in effective silence is unique among birds and provides a distinct hunting advantage, but it remains a mystery as to exactly what aspects of the owl and its flight are responsible for this dramatic noise reduction. Crucially, this mystery extends to how the flow physics may be leveraged to generate noise-reduction strategies for wider technological application. We review current knowledge of aerodynamic noise from owls, ranging from live owl noise measurements to mathematical modeling and experiments focused on how owls may disrupt the standard routes of noise generation. Specialized adaptations and foraging strategies are not uniform across all owl species: Some species may not have need for silent flight, or their evolutionary adaptations may not be effective for useful noise reduction for certain species. This hypothesis is examined using mathematical models and borne out where possible by noise measurements and morphological observations of owl feathers and wings.


2012 ◽  
Vol 487 ◽  
pp. 520-524
Author(s):  
Li Xia Peng

The application of centrifugal fan is wide, but the huge noise can pollute the environment. This paper will discuss the mechanism of centrifugal blower noise generation, and put forward noise reduction method in designing centrifugal blower creatively, thus can solve the problems effectively.


Sign in / Sign up

Export Citation Format

Share Document