Multi-sensor Data Fusion Algorithm Based on Adaptive Trust Estimation and Neural Network

Author(s):  
Xuexin Zhao ◽  
Junhua Wu ◽  
Maoli Wang ◽  
Guangshun Li ◽  
Haili Yu ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1434 ◽  
Author(s):  
Minle Li ◽  
Yihua Hu ◽  
Nanxiang Zhao ◽  
Qishu Qian

Three-dimensional (3D) object detection has important applications in robotics, automatic loading, automatic driving and other scenarios. With the improvement of devices, people can collect multi-sensor/multimodal data from a variety of sensors such as Lidar and cameras. In order to make full use of various information advantages and improve the performance of object detection, we proposed a Complex-Retina network, a convolution neural network for 3D object detection based on multi-sensor data fusion. Firstly, a unified architecture with two feature extraction networks was designed, and the feature extraction of point clouds and images from different sensors realized synchronously. Then, we set a series of 3D anchors and projected them to the feature maps, which were cropped into 2D anchors with the same size and fused together. Finally, the object classification and 3D bounding box regression were carried out on the multipath of fully connected layers. The proposed network is a one-stage convolution neural network, which achieves the balance between the accuracy and speed of object detection. The experiments on KITTI datasets show that the proposed network is superior to the contrast algorithms in average precision (AP) and time consumption, which shows the effectiveness of the proposed network.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1467 ◽  
Author(s):  
Wenbin Zhang ◽  
Youhuan Ning ◽  
Chunguang Suo

With the increasing application of unmanned aerial vehicles (UAVs) to the inspection of high-voltage overhead transmission lines, the study of the safety distance between drones and wires has received extensive attention. The determination of the safety distance between the UAV and the transmission line is of great significance to improve the reliability of the inspection operation and ensure the safe and stable operation of the power grid and inspection equipment. Since there is no quantitative data support for the safety distance of overhead transmission lines in UAV patrol, it is impossible to provide accurate navigation information for UAV safe obstacle avoidance. This paper proposes a mathematical model based on a multi-sensor data fusion algorithm. The safety distance of the line drone is diagnosed. In these tasks, firstly, the physical model of the UAV in the complex electromagnetic field is established to determine the influence law of the UAV on the electric field distortion and analyze the maximum electric and magnetic field strength that the UAV can withstand. Then, based on the main factors affecting the UAV such as the maximum wind speed, inspection speed, positioning error, and the size of the drone, the adaptive weighted fusion algorithm is used to perform first-level data fusion on the homogeneous sensor data. Then, based on the improved evidence, the theory performs secondary fusion on the combined heterogeneous sensor data. According to the final processing result and the type of proposition set, we diagnose the current safety status of the drone to achieve an adaptive adjustment of the safety distance threshold. Lastly, actual measurement data is used to verify the mathematical model. The experimental results show that the mathematical model can accurately identify the safety status of the drone and adaptively adjust the safety distance according to the diagnosis result and surrounding environment information.


Sign in / Sign up

Export Citation Format

Share Document