Analysis of Improved power quality of Different types of Buck-Boost Converters with Power Factor Correction

Author(s):  
Amrita Singh ◽  
Saloni Mishra ◽  
A.N. Tiwari
Author(s):  
Deniss Stepins ◽  
Jin Huang

Switching frequency modulation (SFM) as spread-spectrum technique has been used for electromagnetic interference reduction in switching power converters. In this paper, a switching-frequency-modulated boost power factor correction (PFC) converter operating in continuous conduction mode is analysed in detail in terms of its input power quality. Initially, the effect of SFM on the input current total harmonic distortion, power factor and low-frequency harmonics of the PFC converter are studied by using computer simulations. Some advices on choosing parameters of SFM are given. Then the theoretical results are verified experimentally. It is shown that, from a power quality point of view, SFM can be harmful (it can significantly worsen the power quality of the PFC converter) or almost harmless. The results depend on how properly the modulation parameters are selected.


Author(s):  
Hariharan P ◽  
Dr. Ranjithkumar K

In this work, The devices generally used in industrial, commercial and residential applications need to undergo rectification for their proper functioning and operation. The operation of the buck– boost converter in discontinuous conduction mode ensures inherent PFC operation and reduces complexity in control. Hence there is a need to reduce the line current harmonics so as to improve the power factor of the system. This has led to designing of Power Factor Correction circuits. This concept presents a power factor corrected (PFC) Buck–Boost converter-fed SMPS. This project deals with the design, analysis, simulation, and development of a power-factor-correction (PFC) multiple output switched-mode power supply (SMPS) using a Buck–Boost converter at the front end. Single-phase ac supply is fed to a pair of back-to-back connected buck–boost converters to eliminate the diode bridge rectifier, which results in reduction of conduction losses and power quality improvement at the front end. To observe the performance of this converter, a model based on the Buck Boost topology has been designed and developed software and implemented with Proportional-Integral (PI) and Fuzzy logic controller. The simulations are demonstrated in order to validate the effectiveness of the controllers in power factor improvement. By using MATLAB.


Author(s):  
Aditya Tiwary

New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented.


Sign in / Sign up

Export Citation Format

Share Document