Softmax Regression Based on Bacterial Foraging Optimization Algorithm with t-Distribution Parameters

Author(s):  
Xinyi Qiao ◽  
Zan Yang ◽  
Zilin Hua ◽  
Yingxuan Wang ◽  
Wei Nai ◽  
...  
2014 ◽  
Vol 556-562 ◽  
pp. 3844-3848
Author(s):  
Hai Shen ◽  
Mo Zhang

Quorum sensing is widely distributed in bacteria and make bacteria are similar to complex adaptive systems, with intelligent features such as emerging and non-linear, the ultimate expression of the adaptive to changes in the environment. Based on the phenomenon of bacterial quorum sensing and Bacterial Foraging Optimization Algorithm, some new optimization algorithms have been proposed. In this paper, it presents research situations, such as environment-dependent quorum sensing mechanism, quorum sensing mechanism with quantum behavior, cell-to-cell communication, multi-colony communication, density perception mechanism. Areas of future emphasis and direction in development were also pointed out.


Author(s):  
Pawan R. Bhaladhare ◽  
Devesh C. Jinwala

A tremendous amount of personal data of an individual is being collected and analyzed using data mining techniques. Such collected data, however, may also contain sensitive data about an individual. Thus, when analyzing such data, individual privacy can be breached. Therefore, to preserve individual privacy, one can find numerous approaches proposed for the same in the literature. One of the solutions proposed in the literature is k-anonymity which is used along with the clustering approach. During the investigation, the authors observed that the k-anonymization based clustering approaches all the times result in the loss of information. This paper presents a fractional calculus-based bacterial foraging optimization algorithm (FC-BFO) to generate an optimal cluster. In addition to this, the authors utilize the concept of fractional calculus (FC) in the chemotaxis step of a bacterial foraging optimization (BFO) algorithm. The main objective is to improve the optimization ability of the BFO algorithm. The authors also evaluate their proposed FC-BFO algorithm, empirically, focusing on information loss and execution time as a vital metric. The experimental evaluations show that our proposed FC-BFO algorithm generates an optimal cluster with lesser information loss as compared with the existing clustering approaches.


2016 ◽  
Vol 10 (1) ◽  
pp. 45-65 ◽  
Author(s):  
Pawan R. Bhaladhare ◽  
Devesh C. Jinwala

A tremendous amount of personal data of an individual is being collected and analyzed using data mining techniques. Such collected data, however, may also contain sensitive data about an individual. Thus, when analyzing such data, individual privacy can be breached. Therefore, to preserve individual privacy, one can find numerous approaches proposed for the same in the literature. One of the solutions proposed in the literature is k-anonymity which is used along with the clustering approach. During the investigation, the authors observed that the k-anonymization based clustering approaches all the times result in the loss of information. This paper presents a fractional calculus-based bacterial foraging optimization algorithm (FC-BFO) to generate an optimal cluster. In addition to this, the authors utilize the concept of fractional calculus (FC) in the chemotaxis step of a bacterial foraging optimization (BFO) algorithm. The main objective is to improve the optimization ability of the BFO algorithm. The authors also evaluate their proposed FC-BFO algorithm, empirically, focusing on information loss and execution time as a vital metric. The experimental evaluations show that our proposed FC-BFO algorithm generates an optimal cluster with lesser information loss as compared with the existing clustering approaches.


2018 ◽  
Vol 52 ◽  
pp. 301-311 ◽  
Author(s):  
Liying Wang ◽  
Weiguo Zhao ◽  
Yulong Tian ◽  
Gangzhu Pan

2015 ◽  
Vol 785 ◽  
pp. 83-87 ◽  
Author(s):  
Elia Erwani Hassan ◽  
Titik Khawa Abdul Rahman ◽  
Zuhaina Zakaria ◽  
Nazrulazhar Bahaman

This paper introduced a new heuristic method the Improved to Bacterial Foraging Optimization Algorithm or IBFO to provide minimize objective functions in Secured Environmental Economic Dispatch (SEED) problems. An optimization problem may involve the highly non linear, non convex and non differentiable tends the solutions observed from a multiple local minima. The limitation faced by conventional methods are being trapped at any this local minima and prevent to reach the global minima. For that reason, this approach IBFO is tested under IEEE 118 bus system to obtain the minimum total cost function with less emission involved. Additionally, the proposed optimization approach is compared to original Bacterial Foraging Optimization Algorithm (BFO). As a result, all findings supported the novel IBFO as the competent and reliable technique.


Sign in / Sign up

Export Citation Format

Share Document