Traffic light control for a single intersection based on wireless sensor network

Author(s):  
Fuqiang Zou ◽  
Bo Yang ◽  
Yitao Cao
2020 ◽  
Vol 18 (5) ◽  
pp. 1231-1240
Author(s):  
Lianyu Wang

Purpose Intelligent lighting control system can control lights to go off when people leave, which has been widely concerned by researchers. Design/methodology/approach In this study, an intelligent lighting control system based on wireless sensor network was designed. First, the hardware and software designs of the system were described briefly. Then, the lighting control algorithm was analyzed emphatically. Considering the illumination and uniformity of light, an intelligent lighting control algorithm based on gradient descent was designed. Findings In the system test, it was found that the system had a good through-wall communication function, and the communication distance could fully meet the system requirements and run normally. In the test of the lighting control algorithm, it was found that the user’s satisfaction on uniformity in different scenarios was close to 1, and the satisfaction on illumination could also meet the user’s needs, which verified the reliability of the lighting control algorithm. Originality/value This study provides some theoretical supports for the better application of wireless sensor network in intelligent light control system, which is conducive to the further development of light control system.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Wei Zhang ◽  
Guozhen Tan ◽  
Nan Ding ◽  
Guangyuan Wang

This paper presents the model and algorithms for traffic flow data monitoring and optimal traffic light control based on wireless sensor networks. Given the scenario that sensor nodes are sparsely deployed along the segments between signalized intersections, an analytical model is built using continuum traffic equation and develops the method to estimate traffic parameter with the scattered sensor data. Based on the traffic data and principle of traffic congestion formation, we introduce the congestion factor which can be used to evaluate the real-time traffic congestion status along the segment and to predict the subcritical state of traffic jams. The result is expected to support the timing phase optimization of traffic light control for the purpose of avoiding traffic congestion before its formation. We simulate the traffic monitoring based on theMobile Centurydataset and analyze the performance of traffic light control on VISSIM platform when congestion factor is introduced into the signal timing optimization model. The simulation result shows that this method can improve the spatial-temporal resolution of traffic data monitoring and evaluate traffic congestion status with high precision. It is helpful to remarkably alleviate urban traffic congestion and decrease the average traffic delays and maximum queue length.


JAICT ◽  
2019 ◽  
Vol 2 (2) ◽  
Author(s):  
Arafa Laili Utami

Increasing number of vehicles there are not combining by the increase highway facilities and means of adequate traffic, creating traffic jams can not be avoided. Therefore, it needs a traffic light system which can change the duration adaptive, so delays in traffic flow can be parsed automatically. In this thesis constructed an traffic light prototype that can change the duration of the traffic lights adaptively according to the conditions of real-time flow of the street using a detector such as a HMC5883L compass sensor. With a wireless sensor network and multihop topologies in terms of the system is easy to apply, because it does not require the transmission line in the form of cables and sensors can be added the number and spacing range. The main components used are Arduino Uno, Arduino Mega, XBee and HMC5883L compass sensors. Compass sensor detects the presence of vehicles by calculating magnitude value in the form of interference with Earth's magnetic field caused by cars metal, so  the sensor nodes can send information pathways state conditions in the one intersection to the coordinator via another sensor nodes using xbee in multihop topologies. The results obtained after testing is setting plan to address the inequality of delay on the traffic system can work well with the sensor reading error  0.09% within a period of 2 minutes and the application topology multihop use the traffic light system can expand the detection range 400 m. But the number of hops is used affects the packet loss is greater, namely 0.192% at a distance of 200 m.


Sign in / Sign up

Export Citation Format

Share Document