intelligent transportation system
Recently Published Documents


TOTAL DOCUMENTS

1085
(FIVE YEARS 417)

H-INDEX

28
(FIVE YEARS 10)

2022 ◽  
Vol 13 (2) ◽  
pp. 1-21
Author(s):  
He Li ◽  
Xuejiao Li ◽  
Liangcai Su ◽  
Duo Jin ◽  
Jianbin Huang ◽  
...  

Traffic flow prediction is the upstream problem of path planning, intelligent transportation system, and other tasks. Many studies have been carried out on the traffic flow prediction of the spatio-temporal network, but the effects of spatio-temporal flexibility (historical data of the same type of time intervals in the same location will change flexibly) and spatio-temporal correlation (different road conditions have different effects at different times) have not been considered at the same time. We propose the Deep Spatio-temporal Adaptive 3D Convolution Neural Network (ST-A3DNet), which is a new scheme to solve both spatio-temporal correlation and flexibility, and consider spatio-temporal complexity (complex external factors, such as weather and holidays). Different from other traffic forecasting models, ST-A3DNet captures the spatio-temporal relationship at the same time through the Adaptive 3D convolution module, assigns different weights flexibly according to the influence of historical data, and obtains the impact of external factors on the flow through the ex-mask module. Considering the holidays and weather conditions, we train our model for experiments in Xi’an and Chengdu. We evaluate the ST-A3DNet and the results show that we have better results than the other 11 baselines.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Zhihui Hu ◽  
Hai Tang

With the improvement of urbanization and the continuous expansion of transportation scale, traffic problem has become an important problem in our life. How to ensure traffic safety has become the key issue for the government to implement social management. Nowadays, Internet of Things (IOT) technology is widely used in the industrial technology field. It will have a great impact on human production and life. Intelligent transportation system is a research field involving many high and new technologies. This paper proposes an intelligent transportation system based on Internet of Things technology. This paper presents the optimal design structure of intelligent transportation system based on Internet of Things technology. The experimental results show that the intelligent transportation system can effectively realize the information interaction between the vehicle and the control center and understand the road conditions in advance. At the same time, the intelligent transportation system can improve the driving speed of vehicles on the road, make effective use of resources, reduce economic losses during vehicle operation, and reduce air pollution caused by gasoline emission.


2022 ◽  
Author(s):  
Wilfried Yves Hamilton Adoni ◽  
Tarik Nahhal ◽  
Najib Ben Aoun ◽  
Moez Krichen ◽  
Mohammed Alzahrani

Abstract In this paper, we present a scalable and real-time intelligent transportation system based on a big data framework. The proposed system allows for the use of existing data from road sensors to better understand traffic flow, traveler behavior, and increase road network performance. Our transportation system is designed to process large-scale stream data to analyze traffic events such as incidents, crashes and congestion. The experiments performed on the public transportation modes of the city of Casablanca in Morocco reveal that the proposed system achieves a significant gain of time, gathers large-scale data from many road sensors and is not expensive in terms of hardware resource consumption.


Author(s):  
S. A. Gawande

Abstract: The Intelligent Transportation System is one of the burgeoning inventions that uses new technology to solve a variety of issues. Its compatibility with real-world issues in developing nations like India, such as traffic congestion, infrastructure demand, high traffic loads, and non-lane traffic systems. It is critical to assess a technology's potential in order to determine its viability. The goal of this article is to determine the utility cost ratio of implementation so that it may be evaluated without changing the existing infrastructure design. The end result is a utility cost analysis approach that takes social, economic, and environmental issues into account. As a result, the analysis is quickly examined so that the technology may be applied according to its appropriateness. Keywords: Investments, Congestion, Intelligent Transportation System (ITS), Benefits, Traffic.


Author(s):  
Kaidi Zhao ◽  
Mingyue Xu ◽  
Zhengzhuang Yang ◽  
Dingding Han

Traffic flow forecasting is the basic challenge in intelligent transportation system (ITS). The key problem is to improve the accuracy of model and capture the dynamic temporal and nonlinear spatial dependence. Using real data is one of the ways to improve the spatial–temporal correlation modeling accuracy. However, real traffic flow data are not strictly periodic because of some random factors, which may lead to some deviations. This study focuses on capturing and modeling the temporal perturbation in real periodic data and we propose a spatial–temporal similar graph attention network (STSGAN) to address this problem. In STSGAN, the spatial–temporal graph convolution module is to capture local spatial–temporal relationship in traffic data, and the periodic similar attention module is to treat the nonlinear traffic flow information. Experiments on three datasets demonstrate that our model is best among all methods.


2021 ◽  
Vol 11 (4) ◽  
pp. 5909-5927
Author(s):  
Marina Leite De Barros Baltar ◽  
Victor Hugo Souza De Abreu ◽  
Andrea Souza Santos

Traffic incidents (such as broken-down vehicles, accidents, flat tires and other) constitute an important concern in the urban context, impacting the sustainable development. Thus, currently, the proposition of efficient traffic incident management systems has been encouraged to re-establish road safety and restore the network's traffic capacity. Thus, this paper aims to investigate the main impacts of traffic incidents and elaborate a logical structure of actions that should be employed to improve their management. The results show that many impacts can be identified in the three spheres of sustainable development and improvement actions must accelerate responses to emergencies, invest in Intelligent Transportation System (ITS), develop urban planning with a focus on more roads secure and enforce existing laws and regulations.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2171
Author(s):  
Dinesh Karunanidy ◽  
Rajakumar Ramalingam ◽  
Ankur Dumka ◽  
Rajesh Singh ◽  
Ibrahim Alsukayti ◽  
...  

Intelligent Transportation system are becoming an interesting research area, after Internet of Things (IoT)-based sensors have been effectively incorporated in vehicular ad hoc networks (VANETs). The optimal route discovery in a VANET plays a vital role in establishing reliable communication in uplink and downlink direction. Thus, efficient optimal path discovery without a loop-free route makes network communication more efficient. Therefore, this challenge is addressed by nature-inspired optimization algorithms because of their simplicity and flexibility for solving different kinds of optimization problems. NIOAs are copied from natural phenomena and fall under the category of metaheuristic search algorithms. Optimization problems in route discovery are intriguing because the primary objective is to find an optimal arrangement, ordering, or selection process. Therefore, many researchers have proposed different kinds of optimization algorithm to maintain the balance between intensification and diversification. To tackle this problem, we proposed a novel Java macaque algorithm based on the genetic and social behavior of Java macaque monkeys. The behavior model mimicked from the Java macaque monkey maintains well-balanced exploration and exploitation in the search process. The experimentation outcome depicts the efficiency of the proposed Java macaque algorithm compared to existing algorithms such as discrete cuckoo search optimization (DCSO) algorithm, grey wolf optimizer (GWO), particle swarm optimization (PSO), and genetic algorithm (GA).


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Noor Afiza Mat Razali ◽  
Nuraini Shamsaimon ◽  
Khairul Khalil Ishak ◽  
Suzaimah Ramli ◽  
Mohd Fahmi Mohamad Amran ◽  
...  

AbstractThe development of the Internet of Things (IoT) has produced new innovative solutions, such as smart cities, which enable humans to have a more efficient, convenient and smarter way of life. The Intelligent Transportation System (ITS) is part of several smart city applications where it enhances the processes of transportation and commutation. ITS aims to solve traffic problems, mainly traffic congestion. In recent years, new models and frameworks for predicting traffic flow have been rapidly developed to enhance the performance of traffic flow prediction, alongside the implementation of Artificial Intelligence (AI) methods such as machine learning (ML). To better understand how ML implementations can enhance traffic flow prediction, it is important to inclusively know the current research that has been conducted. The objective of this paper is to present a comprehensive and systematic review of the literature involving 39 articles published from 2016 onwards and extracted from four main databases: Scopus, ScienceDirect, SpringerLink and Taylor & Francis. The extracted information includes the gaps, approaches, evaluation methods, variables, datasets and results of each reviewed study based on the methodology and algorithms used for the purpose of predicting traffic flow. Based on our findings, the common and frequent machine learning techniques that have been applied for traffic flow prediction are Convolutional Neural Network and Long-Short Term Memory. The performance of their proposed techniques was compared with existing baseline models to determine their effectiveness. This paper is limited to certain literature pertaining to common databases. Through this limitation, the discussion is more focused on (and limited to) the techniques found on the list of reviewed articles. The aim of this paper is to provide a comprehensive understanding of the application of ML and DL techniques for improving traffic flow prediction, contributing to the betterment of ITS in smart cities. For future endeavours, experimental studies that apply the most used techniques in the articles reviewed in this study (such as CNN, LSTM or a combination of both techniques) can be accomplished to enhance traffic flow prediction. The results can be compared with baseline studies to determine the accuracy of these techniques.


Sign in / Sign up

Export Citation Format

Share Document