Quality improvement of oxidized-GaAs/n-GaAs structure by nitrogen plasma treatment

Author(s):  
N.C. Paul ◽  
Y. Ohta ◽  
D. Tezuka ◽  
M. Nasuno ◽  
Y. Yamamura ◽  
...  
2021 ◽  
pp. 095400832098729
Author(s):  
K Sudheendra ◽  
Jennifer Vinodhini ◽  
M Govindaraju ◽  
Shantanu Bhowmik

The study involves the processing of a novel poly [1, 4-phenylene-cis-benzobisoxazole] (PBO) fibre reinforced high-temperature thermoplastic composite with polyaryletherketone (PAEK) as the matrix. The PBO fibre and the PAEK film surface was modified using the method of argon and nitrogen plasma treatment. The investigation primarily focuses on evaluating the tensile properties of the fabricated laminates and correlating it with the effect of plasma treatment, surface characteristics, and its fracture surface. A 5% decrease in tensile strength was observed post argon plasma treatment while a 27% increase in strength was observed post nitrogen plasma treatment. The morphology of the failure surface was investigated by scanning electron microscopy and an interfacial failure was observed. Furthermore, the effect of plasma on the wettability of PBO fibres and PAEK film surface was confirmed by the Dynamic Contact Angle analysis and sessile drop method respectively. FTIR spectral analysis was done to investigate the effect of plasma treatment on the chemical structure on the surface. The results of the wettability study showed that the argon plasma treatment of the fibre surface increased its hydrophobicity while nitrogen plasma treatment resulted in the reduction of contact angle.


Author(s):  
Masruroh ◽  
Dionysius J. D. H. Santjojo ◽  
Ahmad Taufiq

In this work, we apply optical emission spectroscopy to investigate active plasma species to study that plasma nitrogen treatment affects polystyrene surfaces. Data concerning these active plasma species are crucial for exploring the polystyrene layer's functionality deposited on quartz crystal microbalance (QCM) surface. Wettability function in biosensors development is essential aspects for biomolecule immobilization. The surface of the polystyrene layer was modified by plasma nitrogen treatment. The process parameters affecting plasma species and characteristic, and hence the treatment results studied in this work were chamber pressure, flow rate, and DC bias. The plasma analysis was conducted by optical emission spectroscopy. The spectroscopy was utilized to predict the active species of plasma, the electron temperature Te and the electron density Ne. The dominant reactive species was N2+ which go through different plasma interactions and on the polystyrene surface depending on the DC bias voltage, the nitrogen- gas flow rate, and the chamber pressure. The plasma treatment results suggest that the ion bombardment was the dominant mechanism that changes the polystyrene's surface. The plasma behavior and surface interactions were found complex with the variation of the process parameter. Keywords: Electron density, Electron temperature, OES, Nitrogen-plasma treatment, Wettability


2006 ◽  
Vol 289 (1) ◽  
pp. 178-182 ◽  
Author(s):  
X.X. Wang ◽  
J.G. Zhang ◽  
B.W. Cheng ◽  
J.Z. Yu ◽  
Q.M. Wang

2005 ◽  
Vol 864 ◽  
Author(s):  
Homan B. Yuen ◽  
Robert Kudrawiec ◽  
K. Ryczko ◽  
S.R. Bank ◽  
M.A. Wistey ◽  
...  

AbstractHeterojunction band offsets of GaNAsSb/GaAs, GaInNAsSb/GaAs, and GaInNAsSb/GaNAs/GaAs quantum well (QW) structures were measured by photoreflectance (PR) spectroscopy. These samples were grown by solid-source molecular beam epitaxy using a radio-frequency nitrogen plasma source. PR spectra were collected from the QW structures and the energy transitions were obtained. The experimental data of the QW energy transitions were analyzed by theoretical calculations. Using predetermined values such as QW thickness and composition, unknown factors such as the heterojunction band offsets were able to be determined. For the GaN0.02As0.87Sb0.11/GaAs structure, we found that Qc≈0.5. For Ga0.62In0.38N0.026As0.954Sb0.02/GaAs, we found that Qc≈0.8. This value is similar to the antimony free dilute-nitride material GaInNAs since the small amount of antimony does not affect the band offsets. For the technologically important Ga0.61In0.39N0.023As0.957Sb0.02/GaN0.027As0.973/GaAs laser structure, we found that the GaInNAsSb/GaNAs QW had a conduction band offset of 144 meV and a valence band offset of 127 meV. With a greater understanding of the band structure, more advanced GaInNAsSb laser devices can be obtained.


Nanoscale ◽  
2018 ◽  
Vol 10 (34) ◽  
pp. 15938-15942 ◽  
Author(s):  
Hiroyuki Muramatsu ◽  
Masahiro Takahashi ◽  
Cheon-Soo Kang ◽  
Jin Hee Kim ◽  
Yoong Ahm Kim ◽  
...  

The selective nitrogen doping of the outer tubes of double walled carbon nanotubes was demonstrated.


Vacuum ◽  
2020 ◽  
Vol 171 ◽  
pp. 108996
Author(s):  
Jheng-Ci Yang ◽  
Hsin-Fu Huang ◽  
Jyun-Han Li ◽  
Yao-Jen Lee ◽  
Yeong-Her Wang

Sign in / Sign up

Export Citation Format

Share Document