Application of Holographic Neural Network for Stock Price Prediction

Author(s):  
Vaishnavi R. Kunkoliker
Author(s):  
Jimmy Ming-Tai Wu ◽  
Zhongcui Li ◽  
Norbert Herencsar ◽  
Bay Vo ◽  
Jerry Chun-Wei Lin

AbstractIn today’s society, investment wealth management has become a mainstream of the contemporary era. Investment wealth management refers to the use of funds by investors to arrange funds reasonably, for example, savings, bank financial products, bonds, stocks, commodity spots, real estate, gold, art, and many others. Wealth management tools manage and assign families, individuals, enterprises, and institutions to achieve the purpose of increasing and maintaining value to accelerate asset growth. Among them, in investment and financial management, people’s favorite product of investment often stocks, because the stock market has great advantages and charm, especially compared with other investment methods. More and more scholars have developed methods of prediction from multiple angles for the stock market. According to the feature of financial time series and the task of price prediction, this article proposes a new framework structure to achieve a more accurate prediction of the stock price, which combines Convolution Neural Network (CNN) and Long–Short-Term Memory Neural Network (LSTM). This new method is aptly named stock sequence array convolutional LSTM (SACLSTM). It constructs a sequence array of historical data and its leading indicators (options and futures), and uses the array as the input image of the CNN framework, and extracts certain feature vectors through the convolutional layer and the layer of pooling, and as the input vector of LSTM, and takes ten stocks in U.S.A and Taiwan as the experimental data. Compared with previous methods, the prediction performance of the proposed algorithm in this article leads to better results when compared directly.


Author(s):  
Aein Ghorbani Ghashghaeinejad ◽  
Masoumeh Bashiri ◽  
Hamidreza Salehi ◽  
Vahab Bashiri

2014 ◽  
Vol 1006-1007 ◽  
pp. 1031-1034
Author(s):  
Li Zhang ◽  
Qing Yang Xu ◽  
Chao Chen ◽  
Zeng Jun Bao

The stock market is a nonlinear dynamics system with enormous information, which is difficult to predict effectively by traditional methods. The model of stock price forecast based on BP Neutral-Network is put forward in this article. The paper try to find the way how to predictive the stock price. Exhaustive method is used for the hidden layer neurons and training method determination. Finally the experiment results show that the algorithm get better performance in stock price prediction.


Author(s):  
C Anand

Several intelligent data mining approaches, including neural networks, have been widely employed by academics during the last decade. In today's rapidly evolving economy, stock market data prediction and analysis play a significant role. Several non-linear models like neural network, generalized autoregressive conditional heteroskedasticity (GARCH) and autoregressive conditional heteroscedasticity (ARCH) as well as linear models like Auto-Regressive Integrated Moving Average (ARIMA), Moving Average (MA) and Auto Regressive (AR) may be used for stock forecasting. The deep learning architectures inclusive of Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), Multilayer Perceptron (MLP) and Support Vector Machine (SVM) are used in this paper for stock price prediction of an organization by using the previously available stock prices. The National Stock Exchange (NSE) of India dataset is used for training the model with day-wise closing price. Data prediction is performed for a few sample companies selected on a random basis. Based on the comparison results, it is evident that the existing models are outperformed by CNN. The network can also perform stock predictions for other stock markets despite being trained with single market data as a common inner dynamics that has been shared between certain stock markets. When compared to the existing linear models, the neural network model outperforms them in a significant manner, which can be observed from the comparison results.


Stock price prediction is always a most challenging task. Artificial Neural Network prediction clears the stock price prediction challenge by forming the training set. By using the past information as the network input, one can predict the expected output of the network. In order to predict the expected result as the accurate we add multi-layer perceptron to the knowledge set we formed from the past historical data available in the nifty NSE and Sensex BSE. This paper proves that proposing the learning knowledge set using multilayer neural network will predict the accurate closing price of future stock in stock market.


Sign in / Sign up

Export Citation Format

Share Document