feed forward neural network
Recently Published Documents


TOTAL DOCUMENTS

1043
(FIVE YEARS 429)

H-INDEX

31
(FIVE YEARS 7)

Author(s):  
Wisal Adnan Al-Musawi ◽  
Wasan A. Wali ◽  
Mohammed Abd Ali Al-Ibadi

<p>This study aims to design a new architecture of the artificial neural networks (ANNs) using the Xilinx system generator (XSG) and its hardware co-simulation equivalent model using field programmable gate array (FPGA) to predict the behavior of Chua’s chaotic system and use it in hiding information. The work proposed consists of two main sections. In the first section, MATLAB R2016a was used to build a 3×4×3 feed forward neural network (FFNN). The training results demonstrate that FFNN training in the Bayesian regulation algorithm is sufficiently accurate to directly implement. The second section demonstrates the hardware implementation of the network with the XSG on the Xilinx artix7 xc7a100t-1csg324 chip. Finally, the message was first encrypted using a dynamic Chua system and then decrypted using ANN’s chaotic dynamics. ANN models were developed to implement hardware in the FPGA system using the IEEE 754 Single precision floating-point format. The ANN design method illustrated can be extended to other chaotic systems in general.</p>


Author(s):  
Ali Fadel ◽  
Ibraheem Tuffaha ◽  
Mahmoud Al-Ayyoub

In this work, we present several deep learning models for the automatic diacritization of Arabic text. Our models are built using two main approaches, viz. Feed-Forward Neural Network (FFNN) and Recurrent Neural Network (RNN), with several enhancements such as 100-hot encoding, embeddings, Conditional Random Field (CRF), and Block-Normalized Gradient (BNG). The models are tested on the only freely available benchmark dataset and the results show that our models are either better or on par with other models even those requiring human-crafted language-dependent post-processing steps, unlike ours. Moreover, we show how diacritics in Arabic can be used to enhance the models of downstream NLP tasks such as Machine Translation (MT) and Sentiment Analysis (SA) by proposing novel Translation over Diacritization (ToD) and Sentiment over Diacritization (SoD) approaches.


2022 ◽  
Author(s):  
Jiankang Wu ◽  
Shuai Zhang ◽  
Jiayue Xu ◽  
Junwu Dang ◽  
Qingyang Zhao ◽  
...  

Abstract The mammalian brain has an extremely complex, diversified and highly modular structure, and information dissemination in the modular brain network affects various brain diseases. Although a variety of neuromodulation techniques have been used to study the discharge characteristics of neural networks, the effects of transcranial magneto-acoustic electrical stimulation(TMAES) have rarely been mentioned. Based on the excitatory and inhibitory Izhikevich neuron model, we constructs a feed-forward neural network connected by electrical synapses and chemical synapses, and analyzes the firing frequency of the neural network under TMAES and magnetic stimulation and the differences in each layer types of firing patterns of neurons. The results showed that the discharge patterns of neurons in each layer were different, the discharge frequency of inhibitory neurons was higher than that of excited neurons, and the stimulation signal could be transmitted to the whole network layer.The maximum discharge frequency of neural network connected by electrical coupling can reach 0.94kHz, and the discharge frequency of neural network connected by chemical coupling is less than 0.5 kHz.With the increase of coupling degree, the discharge frequency of neurons in each network layer under TMAES is much greater than that under magnetic stimulation.When the induced current is less than 26.5μA/cm 2 , magnetic stimulation can promote the inhibitory neurons, and TMAES has a variety of regulatory effects on the inhibitory neurons in the neural network. The results show that TMAES has better regulation effect than magnetic stimulation, and the regulation effect is affected by neural network structure and stimulation parameters.


Electrochem ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 42-57
Author(s):  
Devendrasinh Darbar ◽  
Indranil Bhattacharya

Estimating the accurate State of Charge (SOC) of a battery is important to avoid the over/undercharging and protect the battery pack from low cycle life. Current methods of SOC estimation use complex equations in the Extended Kalman Filter (EKF) and the equivalent circuit model. In this paper, we used a Feed Forward Neural Network (FNN) to estimate the SOC value accurately where battery parameters such as current, voltage, and charge are mapped directly to the SOC value at the output. A FNN could self-learn the weights with each training data point and update the model parameters such as weights and bias using a combination of two gradient descents (Adam). This model comprises the Dropout technique, which can have many neural network architectures by dropping the neuron/mode at each epoch/training cycle using the same weights and biases. Our FNN model was trained with data comprising different current rates and tested for different cycling data, for example, 5th, 10th, 20th, and 50th cycles and at a different cutoff voltage (4.5 V). The battery used for estimating the SOC value was a Na-ion based battery, which is highly non-linear, and it was fabricated in a house using Na0.67Fe0.5Mn0.5O2 (NFM) as a cathode and Na metal as a reference electrode. The FNN successfully estimated the SOC value for the highly non-linear nature of the Na-ion battery at different current rates (0.05 C, 0.1 C, 0.5 C, 1 C, 2 C), for different cycling data, and at higher cut-off voltage of –4.5 V Na+, reaching the R2 value of ~0.97–~0.99, ~0.99, and ~0.98, respectively.


2022 ◽  
Vol 12 (2) ◽  
pp. 674
Author(s):  
Paweł Majewski ◽  
Dawid Pawuś ◽  
Krzysztof Szurpicki ◽  
Wojciech P. Hunek

In the paper, a comparative case study covering different control strategies of unstable and nonlinear magnetic levitation process is investigated. Three control procedures are examined in order to fulfill the specified performance indices. Thus, a dedicated PD regulator along with the hybrid fuzzy logic PID one as well as feed-forward neural network regulator are respected and summarized according to generally understood tuning techniques. It should be emphasized that the second PID controller is strictly derived from both arbitrary chosen membership functions and those ones selected through the genetic algorithm mechanism. Simulation examples have successfully confirmed the correctness of obtained results, especially in terms of entire control process quality of the magnetic levitation system. It has been observed that the artificial-intelligence-originated approaches have outperformed the classical one in the context of control accuracy and control speed properties in contrary to the energy-saving behavior whereby the conventional method has become a leader. The feature-related compromise, which has never been seen before, along with other crucial peculiarities, is effectively discussed within this paper.


2022 ◽  
Author(s):  
lauri SALMELA ◽  
mathilde hary ◽  
Mehdi MABED ◽  
Alessandro Foi ◽  
John Dudley ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
YiTao Zhou

As one of the core tasks in the field of natural language processing, syntactic analysis has always been a hot topic for researchers, including tasks such as Questions and Answer (Q&A), Search String Comprehension, Semantic Analysis, and Knowledge Base Construction. This paper aims to study the application of deep learning and neural network in natural language syntax analysis, which has significant research and application value. This paper first studies a transfer-based dependent syntax analyzer using a feed-forward neural network as a classifier. By analyzing the model, we have made meticulous parameters of the model to improve its performance. This paper proposes a dependent syntactic analysis model based on a long-term memory neural network. This model is based on the feed-forward neural network model described above and will be used as a feature extractor. After the feature extractor is pretrained, we use a long short-term memory neural network as a classifier of the transfer action, and the characteristics extracted by the syntactic analyzer as its input to train a recursive neural network classifier optimized by sentences. The classifier can not only classify the current pattern feature but also multirich information such as analysis of state history. Therefore, the model is modeled in the analysis process of the entire sentence in syntactic analysis, replacing the method of modeling independent analysis. The experimental results show that the model has achieved greater performance improvement than baseline methods.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 407
Author(s):  
Hüseyin Çamur ◽  
Ahmed Muayad Rashid Al-Ani

The oxidation stability (OX) of the biodiesel is an essential parameter mainly during storage, which reduces the quality of the biodiesel, thus affecting the engine performance. Moreover, many factors affect oxidation stability. Therefore, determining the most significant parameter is essential for achieving accurate predictions. In this paper, an empirical equation (Poisson Regression Model (PRM)), machine learning models (Multilayer Feed-Forward Neural Network (MFFNN), Cascade Feed-forward Neural Network (CFNN), Radial Basis Neural Network (RBFNN), and Elman neural network (ENN)) with various combinations of input parameters are utilized and employed to identify the most relevant parameters for prediction of the oxidation stability of biodiesel. This study measured the physicochemical properties of 39 samples of waste frying methyl ester and their blends with various percentages of palm biodiesel and refined canola biodiesel. To this aim, 14 parameters including concentration amount of WFME (X1), PME (X2), and RCME (X3) in the mixture, kinematic viscosity (KV) at 40 °C, density at 15 °C (D), cloud point (CP), pour point (PP), the estimation value of the sum of the saturated (∑SFAMs), monounsaturated (∑MUFAMs), polyunsaturated (∑PUFAMs), degree of unsaturation (DU), long-chain saturated factor (LCSF), very-long-chain fatty acid (VLCFA), and ratio (∑MUFAMs+∑PUFAMs∑SFAMs) fatty acid composition were considered. The results demonstrated that the RBFNN model with the combination of X1, X2, X3, ∑SFAMs, ∑MUFAMs, ∑PUFAMs. VLCFA, DU, LCSF, ∑MUFAMs+∑PUFAMs∑SFAMs, KV, and D has the lowest value of root mean squared error and mean absolute error. In the end, the results demonstrated that the RBFNN model performed well and presented high accuracy in estimating the value of OX for the biodiesel samples compared to PRM, MFFNN, CFNN, and ENN.


2022 ◽  
Vol 9 (6) ◽  
Author(s):  
Dhamyaa Salim Mutar

The need for security means has brought from the fact of privacy of data especially after the communication revolution in the recent times. The advancement of data mining and machine learning technology has paved the road for establishment an efficient attack prediction paradigm for protecting of large scaled networks. In this project, computer network intrusions had been eliminated by using smart machine learning algorithm. Referring a big dataset named as KDD computer intrusion dataset which includes large number of connections that diagnosed with several types of attacks; the model is established for predicting the type of attack by learning through this data. Feed forward neural network model is outperformed over the other proposed clustering models in attack prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document