Sentiment Analysis on Youtube Social Media Using Decision Tree and Random Forest Algorithm: A Case Study

Author(s):  
Mohammad Aufar ◽  
Rachmadita Andreswari ◽  
Dita Pramesti
2019 ◽  
Vol 2 (2) ◽  
pp. 29
Author(s):  
Nfn Bahrawi

Every day billions of data in the form of text flood the internet be it sourced from forums, blogs, social media, or review sites. With the help of sentiment analysis, previously unstructured data can be transformed into more structured data and make this data important information. The data can describe opinions / sentiments from the public, about products, brands, community services, services, politics, or other topics. Sentiment analysis is one of the fields of Natural Language Processing (NLP) that builds systems for recognizing and extracting opinions in text form. At the most basic level, the goal is to get emotions or 'feelings' from a collection of texts or sentences. The field of sentiment analysis, or also called 'opinion mining', always involves some form of data mining process to get the text that will later be carried out the learning process in the mechine learning that will be built. this study conducts a sentimental analysis with data sources from Twitter using the Random Forest algorithm approach, we will measure the evaluation results of the algorithm we use in this study. The accuracy of measurements in this study, around 75%. the model is good enough. but we suggest trying other algorithms in further research. Keywords: sentiment analysis; random forest algorithm; clasification; machine learnings. 


2021 ◽  
Vol 13 (7) ◽  
pp. 3836
Author(s):  
David Flores-Ruiz ◽  
Adolfo Elizondo-Salto ◽  
María de la O. Barroso-González

This paper explores the role of social media in tourist sentiment analysis. To do this, it describes previous studies that have carried out tourist sentiment analysis using social media data, before analyzing changes in tourists’ sentiments and behaviors during the COVID-19 pandemic. In the case study, which focuses on Andalusia, the changes experienced by the tourism sector in the southern Spanish region as a result of the COVID-19 pandemic are assessed using the Andalusian Tourism Situation Survey (ECTA). This information is then compared with data obtained from a sentiment analysis based on the social network Twitter. On the basis of this comparative analysis, the paper concludes that it is possible to identify and classify tourists’ perceptions using sentiment analysis on a mass scale with the help of statistical software (RStudio and Knime). The sentiment analysis using Twitter data correlates with and is supplemented by information from the ECTA survey, with both analyses showing that tourists placed greater value on safety and preferred to travel individually to nearby, less crowded destinations since the pandemic began. Of the two analytical tools, sentiment analysis can be carried out on social media on a continuous basis and offers cost savings.


2021 ◽  
Vol 17 (3) ◽  
pp. 265-274
Author(s):  
Mohammad Ashraf Ottom ◽  
Khalid M.O. Nahar

Pressacademia ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 246-254
Author(s):  
Abdullah Onden ◽  
Meltem Kiygi-Calli ◽  
Elif Yolbulan-Okan

Sign in / Sign up

Export Citation Format

Share Document