Sentiment Analysis of Social Media Users Using Naïve Bayes, Decision Tree, Random Forest Algorithm: A Case Study of Draft Law on the Elimination of Sexual Violence (RUU PKS)

Author(s):  
Khalisa Virra ◽  
Rachmadita Andreswari ◽  
Muhammad Azani Hasibuan
SinkrOn ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 9-20
Author(s):  
Antonius Yadi Kuntoro

Abstract — The current Governor of DKI Jakarta, even though he has been elected since 2017 is always interesting to talk about or even comment on. Comments that appear come from the media directly or through social media. Twitter has become one of the social media that is often used as a media to comment on elected governors and can even become a trending topic on Twitter social media. Netizens who comment are also varied, some are always Tweeting criticism, some are commenting Positively, and some are only re-Tweeting. In this research, a prediction of whether active Netizens will tend to always lead to Positive or Negative comments will be carried out in this study. Model algorithms used are Decision Tree, Naïve Bayes, Random Forest, and also Ensemble. Twitter data that is processed must go through preprocessing first before proceeding using Rapidminer. In trials using Rapidminer conducted in four trials by dividing into two parts, namely testing data and training data. Comparisons made are 10% testing data: 90% Training data, then 20% testing data: 80% training data, then 30% testing data: 70% training data, and the last is 35% testing data: 65% training data. The average Accuracy for the Decision Tree algorithm is 93.15%, while for the Naïve Bayes algorithm the Accuracy is 91.55%, then for the Random Forest algorithm is 93.41, and the last is the Ensemble algorithm with an Accuracy of 93, 42%. here. Keywords — Decision Tree, Naïve Bayes, Random Forest, Set, Twitter.  


2020 ◽  
Vol 1 (2) ◽  
pp. 61-66
Author(s):  
Febri Astiko ◽  
Achmad Khodar

This study aims to design a machine learning model of sentiment analysis on Indosat Ooredoo service reviews on social media twitter using the Naive Bayes algorithm as a classifier of positive and negative labels. This sentiment analysis uses machine learning to get patterns an model that can be used again to predict new data.


2021 ◽  
Vol 6 (3) ◽  
pp. 178-188
Author(s):  
Adhitya Prayoga Permana ◽  
Kurniyatul Ainiyah ◽  
Khadijah Fahmi Hayati Holle

Start-ups have a very important role in economic growth, the existence of a start-up can open up many new jobs. However, not all start-ups that are developing can become successful start-ups. This is because start-ups have a high failure rate, data shows that 75% of start-ups fail in their development. Therefore, it is important to classify the successful and failed start-ups, so that later it can be used to see the factors that most influence start-up success, and can also predict the success of a start-up. Among the many classifications in data mining, the Decision Tree, kNN, and Naïve Bayes algorithms are the algorithms that the authors chose to classify the 923 start-up data records that were previously obtained. The test results using cross-validation and T-test show that the Decision Tree Algorithm is the most appropriate algorithm for classifying in this case study. This is evidenced by the accuracy value obtained from the Decision Tree algorithm, which is greater than other algorithms, which is 79.29%, while the kNN algorithm has an accuracy value of 66.69%, and Naive Bayes is 64.21%.


2019 ◽  
Vol 5 (2) ◽  
pp. 227-234
Author(s):  
Riska Aryanti ◽  
Atang Saepudin ◽  
Eka Fitriani ◽  
Rifky Permana ◽  
Dede Firmansyah Saefudin

Congestion major cities in Indonesi caused by the proliferation of the use of private vehicles. Some expressing he thinks about busway user through the social media and other web site, This opinion can be used as a sentiment analysis to see if the user busway proposes a review of positive or negative. The results of the analysis sentiment can help in the sight of and evaluate the use of busway, also expected to improve and transjakarta facility from so they tend to have an opinion positive. Based on the results of the analysis, sentiment it is hoped people will switch to using the will of course will reduce congestion. In the study also added the stages preprocesing by using the framework gataframework to complete the process that cannot be done on tools rapidminer. The methodology that was used in this research was it is anticipated that analysis the sentiment of the by the application of an genetic algorithm for an election features with an algorithm naive bayes. From the results of the testing to the case in research it is found that classification algorithm naive bayes based genetic algorithm having the kind of accuracy that good enough 88,55 % and value of auc reached 0,813 % with the level of the diagnosis classifications good. So that in this research classification algorithm naive bayes based genetic algorithm can be recommended as algorithms classifications good enough to analyze the busway user sentimen. Based on analysis is expected to private transport users will switch to using the busway will reduce congestion


2020 ◽  
Vol 7 (3) ◽  
pp. 441-450
Author(s):  
Haliem Sunata

Tingginya penggunaan mesin ATM, sehingga menimbulkan celah fraud yang dapat dilakukan oleh pihak ketiga dalam membantu PT. Bank Central Asia Tbk untuk menjaga mesin ATM agar selalu siap digunakan oleh nasabah. Lambat dan sulitnya mengidentifikasi fraud mesin ATM menjadi salah satu kendala yang dihadapi PT. Bank Central Asia Tbk. Dengan adanya permasalahan tersebut maka peneliti mengumpulkan 5 dataset dan melakukan pre-processing dataset sehingga dapat digunakan untuk pemodelan dan pengujian algoritma, guna menjawab permasalahan yang terjadi. Dilakukan 7 perbandingan algoritma diantaranya decision tree, gradient boosted trees, logistic regression, naive bayes ( kernel ), naive bayes, random forest dan random tree. Setelah dilakukan pemodelan dan pengujian didapatkan hasil bahwa algoritma gradient boosted trees merupakan algoritma terbaik dengan hasil akurasi sebesar 99.85% dan nilai AUC sebesar 1, tingginya hasil algoritma ini disebabkan karena kecocokan setiap attribut yang diuji dengan karakter gradient boosted trees dimana algoritma ini menyimpan dan mengevaluasi hasil yang ada. Maka algoritma gradient boosted trees merupakan penyelesaian dari permasalahan yang dihadapi oleh PT. Bank Central Asia Tbk.


Sign in / Sign up

Export Citation Format

Share Document