Dynamically updating distributed software: supporting change in uncertain and mistrustful environments

Author(s):  
M.E. Segal ◽  
O. Frieder
Keyword(s):  
2019 ◽  
Vol 214 ◽  
pp. 05010 ◽  
Author(s):  
Giulio Eulisse ◽  
Piotr Konopka ◽  
Mikolaj Krzewicki ◽  
Matthias Richter ◽  
David Rohr ◽  
...  

ALICE is one of the four major LHC experiments at CERN. When the accelerator enters the Run 3 data-taking period, starting in 2021, ALICE expects almost 100 times more Pb-Pb central collisions than now, resulting in a large increase of data throughput. In order to cope with this new challenge, the collaboration had to extensively rethink the whole data processing chain, with a tighter integration between Online and Offline computing worlds. Such a system, code-named ALICE O2, is being developed in collaboration with the FAIR experiments at GSI. It is based on the ALFA framework which provides a generalized implementation of the ALICE High Level Trigger approach, designed around distributed software entities coordinating and communicating via message passing. We will highlight our efforts to integrate ALFA within the ALICE O2 environment. We analyze the challenges arising from the different running environments for production and development, and conclude on requirements for a flexible and modular software framework. In particular we will present the ALICE O2 Data Processing Layer which deals with ALICE specific requirements in terms of Data Model. The main goal is to reduce the complexity of development of algorithms and managing a distributed system, and by that leading to a significant simplification for the large majority of the ALICE users.


1989 ◽  
Vol 12 (3) ◽  
pp. 317-356
Author(s):  
David C. Rine

Partitioning and allocating of software components are two important parts of software design in distributed software engineering. This paper presents two general algorithms that can, to a limited extent, be used as tools to assist in partitioning software components represented as objects in a distributed software design environment. One algorithm produces a partition (equivalence classes) of the objects, and a second algorithm allows a minimum amount of redundancy. Only binary relationships of actions (use or non-use) are considered in this paper.


2021 ◽  
Vol 11 (12) ◽  
pp. 5685
Author(s):  
Hosam Aljihani ◽  
Fathy Eassa ◽  
Khalid Almarhabi ◽  
Abdullah Algarni ◽  
Abdulaziz Attaallah

With the rapid increase of cyberattacks that presently affect distributed software systems, cyberattacks and their consequences have become critical issues and have attracted the interest of research communities and companies to address them. Therefore, developing and improving attack detection techniques are prominent methods to defend against cyberattacks. One of the promising attack detection methods is behaviour-based attack detection methods. Practically, attack detection techniques are widely applied in distributed software systems that utilise network environments. However, there are some other challenges facing attack detection techniques, such as the immutability and reliability of the detection systems. These challenges can be overcome with promising technologies such as blockchain. Blockchain offers a concrete solution for ensuring data integrity against unauthorised modification. Hence, it improves the immutability for detection systems’ data and thus the reliability for the target systems. In this paper, we propose a design for standalone behaviour-based attack detection techniques that utilise blockchain’s functionalities to overcome the above-mentioned challenges. Additionally, we provide a validation experiment to prove our proposal in term of achieving its objectives. We argue that our proposal introduces a novel approach to develop and improve behaviour-based attack detection techniques to become more reliable for distributed software systems.


Sign in / Sign up

Export Citation Format

Share Document