scholarly journals System identification of Local Field Potentials under Deep Brain Stimulation in a healthy primate

Author(s):  
G Pedoto ◽  
S Santaniello ◽  
E B Montgomery ◽  
J T Gale ◽  
G Fiengo ◽  
...  
2007 ◽  
Vol 4 (5) ◽  
pp. 605-614 ◽  
Author(s):  
Sara Marceglia ◽  
Lorenzo Rossi ◽  
Guglielmo Foffani ◽  
AnnaMaria Bianchi ◽  
Sergio Cerutti ◽  
...  

2016 ◽  
Vol 127 (7) ◽  
pp. 2573-2580 ◽  
Author(s):  
Yongzhi Huang ◽  
Huichun Luo ◽  
Alexander L. Green ◽  
Tipu Z. Aziz ◽  
Shouyan Wang

2017 ◽  
Vol 25 (12) ◽  
pp. 2217-2226 ◽  
Author(s):  
Xing Qian ◽  
Yue Chen ◽  
Yuan Feng ◽  
Bozhi Ma ◽  
Hongwei Hao ◽  
...  

2018 ◽  
Vol 120 (4) ◽  
pp. 1932-1944 ◽  
Author(s):  
Nicholas Maling ◽  
Scott F. Lempka ◽  
Zack Blumenfeld ◽  
Helen Bronte-Stewart ◽  
Cameron C. McIntyre

Clinical deep brain stimulation (DBS) technology is evolving to enable chronic recording of local field potentials (LFPs) that represent electrophysiological biomarkers of the underlying disease state. However, little is known about the biophysical basis of LFPs, or how the patient’s unique brain anatomy and electrode placement impact the recordings. Therefore, we developed a patient-specific computational framework to analyze LFP recordings within a clinical DBS context. We selected a subject with Parkinson’s disease implanted with a Medtronic Activa PC+S DBS system and reconstructed their subthalamic nucleus (STN) and DBS electrode location using medical imaging data. The patient-specific STN volume was populated with 235,280 multicompartment STN neuron models, providing a neuron density consistent with histological measurements. Each neuron received time-varying synaptic inputs and generated transmembrane currents that gave rise to the LFP signal recorded at DBS electrode contacts residing in a finite element volume conductor model. We then used the model to study the role of synchronous beta-band inputs to the STN neurons on the recorded power spectrum. Three bipolar pairs of simultaneous clinical LFP recordings were used in combination with an optimization algorithm to customize the neural activity parameters in the model to the patient. The optimized model predicted a 2.4-mm radius of beta-synchronous neurons located in the dorsolateral STN. These theoretical results enable biophysical dissection of the LFP signal at the cellular level with direct comparison to the clinical recordings, and the model system provides a scientific platform to help guide the design of DBS technology focused on the use of subthalamic beta activity in closed-loop algorithms. NEW & NOTEWORTHY The analysis of deep brain stimulation of local field potential (LFP) data is rapidly expanding from scientific curiosity to the basis for clinical biomarkers capable of improving the therapeutic efficacy of stimulation. With this growing clinical importance comes a growing need to understand the underlying electrophysiological fundamentals of the signals and the factors contributing to their modulation. Our model reconstructs the clinical LFP from first principles and highlights the importance of patient-specific factors in dictating the signals recorded.


2012 ◽  
Vol 123 (11) ◽  
pp. 2232-2238 ◽  
Author(s):  
Ellen L. Air ◽  
Elena Ryapolova-Webb ◽  
Coralie de Hemptinne ◽  
Jill L. Ostrem ◽  
Nicholas B. Galifianakis ◽  
...  

2017 ◽  
Vol 126 (6) ◽  
pp. 1033-1042 ◽  
Author(s):  
Antonio Martinez-Simon ◽  
Manuel Alegre ◽  
Cristina Honorato-Cia ◽  
Jorge M. Nuñez-Cordoba ◽  
Elena Cacho-Asenjo ◽  
...  

Abstract Background Deep brain stimulation electrodes can record oscillatory activity from deep brain structures, known as local field potentials. The authors’ objective was to evaluate and quantify the effects of dexmedetomidine (0.2 μg·kg-1·h-1) on local field potentials in patients with Parkinson disease undergoing deep brain stimulation surgery compared with control recording (primary outcome), as well as the effect of propofol at different estimated peak effect site concentrations (0.5, 1.0, 1.5, 2.0, and 2.5 μg/ml) from control recording. Methods A nonrandomized, nonblinded controlled clinical trial was carried out to assess the change in local field potentials activity over time in 10 patients with Parkinson disease who underwent deep brain stimulation placement surgery (18 subthalamic nuclei). The relationship was assessed between the activity in nuclei in the same patient at a given time and repeated measures from the same nucleus over time. Results No significant difference was observed between the relative beta power of local field potentials in dexmedetomidine and control recordings (−7.7; 95% CI, −18.9 to 7.6). By contrast, there was a significant decline of 12.7% (95% CI, −21.3 to −4.7) in the relative beta power of the local field potentials for each increment in the estimated peak propofol concentrations at the effect site relative to the control recordings. Conclusions Dexmedetomidine (0.2 μg·kg-1·h-1) did not show effect on local field potentials compared with control recording. A significant deep brain activity decline from control recording was observed with incremental doses of propofol.


Sign in / Sign up

Export Citation Format

Share Document