Pre-launch characterization of the clouds and the Earth'S Radiant Energy System (CERES) flight model 5 (FM5) instrument on NPP

Author(s):  
Susan Thomas ◽  
Kory J. Priestley ◽  
Mohan Shankar ◽  
Nathaniel P. Smith ◽  
Mark G. Timcoe
2010 ◽  
Author(s):  
Susan Thomas ◽  
K. J. Priestley ◽  
N. M. Smith ◽  
N. G. Loeb ◽  
P. C. Hess ◽  
...  
Keyword(s):  

2012 ◽  
Vol 29 (3) ◽  
pp. 375-381 ◽  
Author(s):  
Xianglei Huang ◽  
Norman G. Loeb ◽  
Huiwen Chuang

Abstract Clouds and the Earth’s Radiant Energy System (CERES) daytime longwave (LW) radiances are determined from the difference between a total (TOT) channel (0.3–200 μm) measurement and a shortwave (SW) channel (0.3–5 μm) measurement, while nighttime LW radiances are obtained directly from the TOT channel. This means that a drift in the SW channel or the SW portion of the TOT channel could impact the daytime longwave radiances, but not the nighttime ones. This study evaluates daytime and nighttime CERES LW radiances for a possible secular drift in CERES LW observations using spectral radiances observed by Atmospheric Infrared Sounder (AIRS). By examining the coincidental AIRS and CERES Flight Model 3 (FM3) measurements over the tropical clear-sky oceans for all of January and July months since 2005, a secular drift of about −0.11% yr−1 in the daytime CERES-FM3 longwave unfiltered radiance can be identified in the CERES Single Scanner Footprint (SSF) Edition 2 product. This provides an upper-bound estimation for the drift in daytime outgoing longwave radiation, which is approximately −0.323 W m−2 yr−1. This estimation is consistent with the independent assessment concluded by the CERES calibration team. Such secular drift has been greatly reduced in the latest CERES SSF Edition 3 product. Comparisons are conducted for the CERES window channel as well, and it shows essentially no drift. This study serves as a practical example illustrating how the measurements of spectrally resolved radiances can be used to help evaluate data products from other narrowband or broadband measurements.


Author(s):  
Nathaniel P. Smith ◽  
Z. Peter Szewczyk ◽  
Robert S. Wilson ◽  
Kory J. Priestley ◽  
Susan Thomas

2014 ◽  
Author(s):  
Nathaniel P. Smith ◽  
Susan Thomas ◽  
Mohan Shankar ◽  
Z. P. Szewczyk ◽  
Robert S. Wilson ◽  
...  

2012 ◽  
Author(s):  
Susan Thomas ◽  
Kory J. Priestley ◽  
Phillip C. Hess ◽  
Robert S. Wilson ◽  
Nathaniel P. Smith ◽  
...  

2008 ◽  
Vol 25 (7) ◽  
pp. 1106-1117 ◽  
Author(s):  
N. Clerbaux ◽  
S. Dewitte ◽  
C. Bertrand ◽  
D. Caprion ◽  
B. De Paepe ◽  
...  

Abstract The method used to estimate the unfiltered longwave broadband radiance from the filtered radiances measured by the Geostationary Earth Radiation Budget (GERB) instrument is presented. This unfiltering method is used to generate the first released edition of the GERB-2 dataset. This method involves a set of regressions between the unfiltering factor (i.e., the ratio of the unfiltered and filtered broadband radiances) and the narrowband observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument. The regressions are theoretically derived from a large database of simulated spectral radiance curves obtained by radiative transfer computations. The generation of this database is fully described. Different sources of error that may affect the GERB unfiltering have been identified and the associated error magnitudes are assessed on the database. For most of the earth–atmosphere conditions, the error introduced during the unfiltering processes is well under 0.5% (RMS error of about 0.1%). For more confidence, the unfiltered radiances of GERB-2 are validated by cross comparison with collocated and coangular Clouds and the Earth’s Radiant Energy System (CERES) observations. The agreement between the unfiltered radiances is within the science goals (1% accuracy for GERB and 0.5% for CERES) for the Flight Model 2 (FM2). For the CERES Flight Model 3 (FM3) instrument, an overall difference of 1.8% is observed. The intercomparisons indicate some scene-type dependency, which is due to the unfiltering for the cloudy scenes. This should be corrected for subsequent editions of the database.


Sign in / Sign up

Export Citation Format

Share Document