Thai Traffic Sign Classification and Recognition System Based on Histogram of Gradients, Color Layout Descriptor, and Normalized Correlation Coefficient

Author(s):  
Nattapol Namyang ◽  
Suphakant Phimoltares
2019 ◽  
Author(s):  
Rajashekar A ◽  
Shruti Hegdekar ◽  
Dikpal Shrestha ◽  
Prabin Nepal ◽  
Sujanb Neupane

2021 ◽  
Vol 11 (8) ◽  
pp. 3666
Author(s):  
Zoltán Fazekas ◽  
László Gerencsér ◽  
Péter Gáspár

For over a decade, urban road environment detection has been a target of intensive research. The topic is relevant for the design and implementation of advanced driver assistance systems. Typically, embedded systems are deployed in these for the operation. The environments can be categorized into road environment-types. Abrupt transitions between these pose a traffic safety risk. Road environment-type transitions along a route manifest themselves also in changes in the distribution of traffic signs and other road objects. Can the placement and the detection of traffic signs be modelled jointly with an easy-to-handle stochastic point process, e.g., an inhomogeneous marked Poisson process? Does this model lend itself for real-time application, e.g., via analysis of a log generated by a traffic sign detection and recognition system? How can the chosen change detector help in mitigating the traffic safety risk? A change detection method frequently used for Poisson processes is the cumulative sum (CUSUM) method. Herein, this method is tailored to the specific stochastic model and tested on realistic logs. The use of several change detectors is also considered. Results indicate that a traffic sign-based road environment-type change detection is feasible, though it is not suitable for an immediate intervention.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 686
Author(s):  
Ke Zhou ◽  
Yufei Zhan ◽  
Dongmei Fu

Traffic sign recognition in poor environments has always been a challenge in self-driving. Although a few works have achieved good results in the field of traffic sign recognition, there is currently a lack of traffic sign benchmarks containing many complex factors and a robust network. In this paper, we propose an ice environment traffic sign recognition benchmark (ITSRB) and detection benchmark (ITSDB), marked in the COCO2017 format. The benchmarks include 5806 images with 43,290 traffic sign instances with different climate, light, time, and occlusion conditions. Second, we tested the robustness of the Libra-RCNN and HRNetv2p on the ITSDB compared with Faster-RCNN. The Libra-RCNN performed well and proved that our ITSDB dataset did increase the challenge in this task. Third, we propose an attention network based on high-resolution traffic sign classification (PFANet), and conduct ablation research on the design parallel fusion attention module. Experiments show that our representation reached 93.57% accuracy in ITSRB, and performed as well as the newest and most effective networks in the German traffic sign recognition dataset (GTSRB).


Author(s):  
Manjiri Bichkar ◽  
Suyasha Bobhate ◽  
Prof. Sonal Chaudhari

This paper presents an effective solution to detecting traffic signs on road by first classifying the traffic sign images us-ing Convolutional Neural Network (CNN) on the German Traffic Sign Recognition Benchmark (GTSRB)[1] and then detecting the images of Indian Traffic Signs using the Indian Dataset which will be used as testing dataset while building classification model. Therefore this system helps electric cars or self driving cars to recognise the traffic signs efficiently and correctly. The system involves two parts, detection of traffic signs from the environment and classification based on CNN thereby recognising the traffic sign. The classification involves building a CNN model of different filters of dimensions 3 × 3, 5 × 5, 9 × 9, 13 × 13, 15 × 15,19 × 19, 23 × 23, 25 × 25 and 31 ×31 from which the most efficient filter is chosen for further classifying the image detected. The detection involves detecting the traffic sign using YOLO v3-v4 and BLOB detection. Transfer Learning is used for using the trained model for detecting Indian traffic sign images.


2021 ◽  
Author(s):  
Dominika Przewlocka ◽  
Marcin Kowalczyk ◽  
Tomasz Kryjak

Deep learning algorithms are a key component of many state-of-the-art vision systems, especially as Convolutional Neural Networks (CNN) outperform most solutions in the sense of accuracy. To apply such algorithms in real-time applications, one has to address the challenges of memory and computational complexity. To deal with the first issue, we use networks with reduced precision, specifically a binary neural network (also known as XNOR). To satisfy the computational requirements, we propose to use highly parallel and low-power FPGA devices. In this work, we explore the possibility of accelerating XNOR networks for traffic sign classification. The trained binary networks are implemented on the ZCU 104 development board, equipped with a Zynq UltraScale+ MPSoC device using two different approaches. Firstly, we propose a custom HDL accelerator for XNOR networks, which enables the inference with almost 450 fps. Even better results are obtained with the second method - the Xilinx FINN accelerator - enabling to process input images with around 550 frame rate. Both approaches provide over 96% accuracy on the test set.


Author(s):  
R. Vicen-Bueno ◽  
A. García-González ◽  
E. Torijano-Gordo ◽  
R. Gil-Pita ◽  
M. Rosa-Zurera

Sign in / Sign up

Export Citation Format

Share Document