Energy Storage Transitive Energy Control for Node Voltage Stability of Distribution Network through Bertrand Dynamic Price Auction

Author(s):  
Yue Jingpeng ◽  
Liu Lifang ◽  
Zhong Zhuoying ◽  
Liang Xiaobin ◽  
Zhao Wei ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4325
Author(s):  
Jiaqi Gu ◽  
Fei Mei ◽  
Jixiang Lu ◽  
Jinjun Lu ◽  
Jingcheng Chen ◽  
...  

The safety and stability of a distribution network will be affected by high photovoltaic (PV) penetration. Therefore, it is of great significance to evaluate the PV accommodation capacity of a distribution network and to select an appropriate PV accommodation scheme. This paper assesses the PV accommodation capacity of a distribution network with an improved algorithm and optimizes the accommodation scheme with a comprehensive index. First, the PSO (particle swarm optimization)–Monte Carlo algorithm is used to evaluate the maximum accommodation capacity of a distribution network with PV integration. Second, a year-round voltage timing simulation is performed to analyze the node voltage that exceeds the limit under the planned PV capacity, which is higher than the previously evaluated maximum accommodation capacity. Finally, the staged control strategy of the PV inverter and energy storage is carried out to select the scheme for the sizing and siting of energy storage. The simulation tests use a 10 kV standard distribution network as an example for PV evaluation and PV accommodation scheme selection to verify the feasibility and effectiveness of the proposed model.


2014 ◽  
Vol 521 ◽  
pp. 183-186
Author(s):  
Xue Shen ◽  
Ran Li

There is a challenge to the voltage stability of distribution network when DG is added to the distribution network. By means of theoretical derivation, three conclusions had been got. The amplitudes of node voltage would rise including DG. The more capacity of DG, the higher node voltages. The same capacity of DG met different nodes would have different effects on the node voltages. The farther away from the equilibrium node, the higher voltages. Through a case, the correctness of theoretical analysis had been proved.


Author(s):  
Jijun Liu ◽  
Yuxin Bai ◽  
Yingfeng He

This work aims at solving complex problems of the optimal scheduling model of active distribution network, teaching strategies are proposed to improve the global search ability of particle swarm optimization. Moreover, based on the improved Euclidean distance cyclic crowding sorting strategy, the convergence ability of Li Zhiquan algorithm is improved. With the cost and voltage indexes of the energy storage system of the distribution network as the goal, different optimized configuration schemes are constructed, and the improved HTL-MOPSO algorithm is adopted to find the solution. The results show that compared with the traditional TV-MOPSO algorithm, the proposed algorithm has better convergence performance and optimization ability, and has a lower economic cost. In short, the algorithm proposed can provide a basis for improving the optimization of active distribution network scheduling strategies.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1261
Author(s):  
Dina Emara ◽  
Mohamed Ezzat ◽  
Almoataz Y. Abdelaziz ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
...  

Recently, the penetration of energy storage systems and photovoltaics has been significantly expanded worldwide. In this regard, this paper presents the enhanced operation and control of DC microgrid systems, which are based on photovoltaic modules, battery storage systems, and DC load. DC–DC and DC–AC converters are coordinated and controlled to achieve DC voltage stability in the microgrid. To achieve such an ambitious target, the system is widely operated in two different modes: stand-alone and grid-connected modes. The novel control strategy enables maximum power generation from the photovoltaic system across different techniques for operating the microgrid. Six different cases are simulated and analyzed using the MATLAB/Simulink platform while varying irradiance levels and consequently varying photovoltaic generation. The proposed system achieves voltage and power stability at different load demands. It is illustrated that the grid-tied mode of operation regulated by voltage source converter control offers more stability than the islanded mode. In general, the proposed battery converter control introduces a stable operation and regulated DC voltage but with few voltage spikes. The merit of the integrated DC microgrid with batteries is to attain further flexibility and reliability through balancing power demand and generation. The simulation results also show the system can operate properly in normal or abnormal cases, thanks to the proposed control strategy, which can regulate the voltage stability of the DC bus in the microgrid with energy storage systems and photovoltaics.


2014 ◽  
Vol 672-674 ◽  
pp. 1085-1089
Author(s):  
Jia Meng ◽  
Zai Lin Piao ◽  
Feng Zhou

The access of DG changes the operation and structure of traditional distribution network. This study mainly focused on controlling DG output current to reduce network loss of the system. Select a simple radial distribution system as example for theoretical analysis and derive the expressions of load current and node voltage. Assuming that there exists a real number k between DG output current and load. Then list the network loss and voltage deviation expressions. For the purpose of operation optimization, k can be determined by mathematical calculations. It proves that the method has a certain rationality to be effective in controlling network loss.


Sign in / Sign up

Export Citation Format

Share Document