scholarly journals Confidence Guided Stereo 3D Object Detection with Split Depth Estimation

Author(s):  
Chengyao Li ◽  
Jason Ku ◽  
Steven L. Waslander
2020 ◽  
Vol 34 (07) ◽  
pp. 12257-12264 ◽  
Author(s):  
Xinlong Wang ◽  
Wei Yin ◽  
Tao Kong ◽  
Yuning Jiang ◽  
Lei Li ◽  
...  

Monocular depth estimation enables 3D perception from a single 2D image, thus attracting much research attention for years. Almost all methods treat foreground and background regions (“things and stuff”) in an image equally. However, not all pixels are equal. Depth of foreground objects plays a crucial role in 3D object recognition and localization. To date how to boost the depth prediction accuracy of foreground objects is rarely discussed. In this paper, we first analyze the data distributions and interaction of foreground and background, then propose the foreground-background separated monocular depth estimation (ForeSeE) method, to estimate the foreground and background depth using separate optimization objectives and decoders. Our method significantly improves the depth estimation performance on foreground objects. Applying ForeSeE to 3D object detection, we achieve 7.5 AP gains and set new state-of-the-art results among other monocular methods. Code will be available at: https://github.com/WXinlong/ForeSeE.


2020 ◽  
Vol 34 (07) ◽  
pp. 10478-10485 ◽  
Author(s):  
Yingjie Cai ◽  
Buyu Li ◽  
Zeyu Jiao ◽  
Hongsheng Li ◽  
Xingyu Zeng ◽  
...  

Monocular 3D object detection task aims to predict the 3D bounding boxes of objects based on monocular RGB images. Since the location recovery in 3D space is quite difficult on account of absence of depth information, this paper proposes a novel unified framework which decomposes the detection problem into a structured polygon prediction task and a depth recovery task. Different from the widely studied 2D bounding boxes, the proposed novel structured polygon in the 2D image consists of several projected surfaces of the target object. Compared to the widely-used 3D bounding box proposals, it is shown to be a better representation for 3D detection. In order to inversely project the predicted 2D structured polygon to a cuboid in the 3D physical world, the following depth recovery task uses the object height prior to complete the inverse projection transformation with the given camera projection matrix. Moreover, a fine-grained 3D box refinement scheme is proposed to further rectify the 3D detection results. Experiments are conducted on the challenging KITTI benchmark, in which our method achieves state-of-the-art detection accuracy.


2021 ◽  
Author(s):  
N.-A.-M. Mai ◽  
P. Duthon ◽  
L. Khoudour ◽  
A. Crouzil ◽  
S. A. Velastin

Sign in / Sign up

Export Citation Format

Share Document