Hippocampus segmentation through gradient based reliability maps for local blending of ACM energy terms

Author(s):  
Dimitrios Zarpalas ◽  
Polyxeni Gkontra ◽  
Petros Daras ◽  
Nicos Maglaveras
2007 ◽  
Vol 51 (1-2) ◽  
pp. 43
Author(s):  
Balázs Polgár ◽  
Endre Selényi
Keyword(s):  

2019 ◽  
Vol 63 (5) ◽  
pp. 50401-1-50401-7 ◽  
Author(s):  
Jing Chen ◽  
Jie Liao ◽  
Huanqiang Zeng ◽  
Canhui Cai ◽  
Kai-Kuang Ma

Abstract For a robust three-dimensional video transmission through error prone channels, an efficient multiple description coding for multi-view video based on the correlation of spatial polyphase transformed subsequences (CSPT_MDC_MVC) is proposed in this article. The input multi-view video sequence is first separated into four subsequences by spatial polyphase transform and then grouped into two descriptions. With the correlation of macroblocks in corresponding subsequence positions, these subsequences should not be coded in completely the same way. In each description, one subsequence is directly coded by the Joint Multi-view Video Coding (JMVC) encoder and the other subsequence is classified into four sets. According to the classification, the indirectly coding subsequence selectively employed the prediction mode and the prediction vector of the counter directly coding subsequence, which reduces the bitrate consumption and the coding complexity of multiple description coding for multi-view video. On the decoder side, the gradient-based directional interpolation is employed to improve the side reconstructed quality. The effectiveness and robustness of the proposed algorithm is verified by experiments in the JMVC coding platform.


Author(s):  
Yaniv Aspis ◽  
Krysia Broda ◽  
Alessandra Russo ◽  
Jorge Lobo

We introduce a novel approach for the computation of stable and supported models of normal logic programs in continuous vector spaces by a gradient-based search method. Specifically, the application of the immediate consequence operator of a program reduct can be computed in a vector space. To do this, Herbrand interpretations of a propositional program are embedded as 0-1 vectors in $\mathbb{R}^N$ and program reducts are represented as matrices in $\mathbb{R}^{N \times N}$. Using these representations we prove that the underlying semantics of a normal logic program is captured through matrix multiplication and a differentiable operation. As supported and stable models of a normal logic program can now be seen as fixed points in a continuous space, non-monotonic deduction can be performed using an optimisation process such as Newton's method. We report the results of several experiments using synthetically generated programs that demonstrate the feasibility of the approach and highlight how different parameter values can affect the behaviour of the system.


2019 ◽  
Vol 31 (8) ◽  
pp. 1382 ◽  
Author(s):  
Ping Cao ◽  
Qiuyang Sheng ◽  
Qing Pan ◽  
Gangmin Ning ◽  
Zhenjie Wang ◽  
...  

Author(s):  
Po Ting Lin ◽  
Wei-Hao Lu ◽  
Shu-Ping Lin

In the past few years, researchers have begun to investigate the existence of arbitrary uncertainties in the design optimization problems. Most traditional reliability-based design optimization (RBDO) methods transform the design space to the standard normal space for reliability analysis but may not work well when the random variables are arbitrarily distributed. It is because that the transformation to the standard normal space cannot be determined or the distribution type is unknown. The methods of Ensemble of Gaussian-based Reliability Analyses (EoGRA) and Ensemble of Gradient-based Transformed Reliability Analyses (EGTRA) have been developed to estimate the joint probability density function using the ensemble of kernel functions. EoGRA performs a series of Gaussian-based kernel reliability analyses and merged them together to compute the reliability of the design point. EGTRA transforms the design space to the single-variate design space toward the constraint gradient, where the kernel reliability analyses become much less costly. In this paper, a series of comprehensive investigations were performed to study the similarities and differences between EoGRA and EGTRA. The results showed that EGTRA performs accurate and effective reliability analyses for both linear and nonlinear problems. When the constraints are highly nonlinear, EGTRA may have little problem but still can be effective in terms of starting from deterministic optimal points. On the other hands, the sensitivity analyses of EoGRA may be ineffective when the random distribution is completely inside the feasible space or infeasible space. However, EoGRA can find acceptable design points when starting from deterministic optimal points. Moreover, EoGRA is capable of delivering estimated failure probability of each constraint during the optimization processes, which may be convenient for some applications.


Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06226
Author(s):  
Diedre Carmo ◽  
Bruna Silva ◽  
Clarissa Yasuda ◽  
Letícia Rittner ◽  
Roberto Lotufo

Sign in / Sign up

Export Citation Format

Share Document