prosthetic hand
Recently Published Documents


TOTAL DOCUMENTS

845
(FIVE YEARS 246)

H-INDEX

35
(FIVE YEARS 9)

Author(s):  
Younggeol Cho ◽  
Yeongseok Lee ◽  
Pyungkang Kim ◽  
Seokhwan Jeong ◽  
Kyung-Soo Kim
Keyword(s):  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bo Zeng ◽  
Hongwei Liu ◽  
Hongzhou Song ◽  
Zhe Zhao ◽  
Shaowei Fan ◽  
...  

Purpose The purpose of this paper is to design a multi-sensory anthropomorphic prosthetic hand and a grasping controller that can detect the slip and automatically adjust the grasping force to prevent the slip. Design/methodology/approach To improve the dexterity, sensing, controllability and practicability of a prosthetic hand, a modular and multi-sensory prosthetic hand was presented. In addition, a slip prevention control based on the tactile feedback was proposed to improve the grasp stability. The proposed controller identifies slippages through detecting the high-frequency vibration signal at the sliding surface in real time and the discrete wavelet transform (DWT) was used to extract the eigenvalues to identify slippages. Once the slip is detected, a direct-feedback method of adjusting the grasp force related with the sliding times was used to prevent it. Furthermore, the stiffness of different objects was estimated and used to improve the grasp force control. The performances of the stiffness estimation, slip detection and slip control are experimentally evaluated. Findings It was found from the experiment of stiffness estimation that the accuracy rate of identification of the hard metal bottle could reach to 90%, while the accuracy rate of identification of the plastic bottles could reach to 80%. There was a small misjudgment rate in the identification of hard and soft plastic bottles. The stiffness of soft plastic bottles, hard plastic bottles and metal bottles were 0.64 N/mm, 1.36 N/mm and 32.55 N/mm, respectively. The results of slip detection and control show that the proposed prosthetic hand with a slip prevention controller can fast and effectively detect and prevent the slip for different disturbances, which has a certain application prospect. Practical implications Due to the small size, low weight, high integration and modularity, the prosthetic hand is easily applied to upper-limb amputees. Meanwhile, the method of the slip prevention control can be used for upper-limb amputees to complete more tasks stably in daily lives. Originality/value A multi-sensory anthropomorphic prosthetic hand is designed, and a method of stable grasps control based on slip detection by a tactile sensor on the fingertip is proposed. The method combines the stiffness estimation of the object and the real-time slip detection based on DWT with the design of the proportion differentiation robust controller based on a disturbance observer and the force controller to achieve slip prevention and stable grasps. It is verified effectively by the experiments and is easy to be applied to commercial prostheses.


2021 ◽  
pp. 2111145
Author(s):  
Saewoong Oh ◽  
Rassoul Tabassian ◽  
Pitchai Thangasamy ◽  
Manmatha Mahato ◽  
Van Hiep Nguyen ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 (6) ◽  
pp. 974-978
Author(s):  
Samara Munaem Naeem ◽  
Majid H. Faidh-Allah

The most important function of a prosthetic hand is their ability to perform tasks in a manner similar to a natural hand, so it is necessary to perform kinematic analysis to determine the performance and the ability of the prosthetic human finger design to work normally and smoothly when it's drive by two sets of links that embedded in its structure and pulled by a servomotor, so the Denvit-Hartenberg method was used to analyse the forward kinematics for the prosthetic finger joints to deduction the trajectory of the fingertip and the velocity of the joints was computed by using the Jacobian matrix. The prosthetic finger was modelled by the Solidwork - 2018 program and the results of kinematics were verified using MATLAB. The analyses that were conducted on the design showed that the designed prosthetic finger has the ability to perform movements and meets the functional requirements for which it is designed.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Johnny V V Parr ◽  
David J Wright ◽  
Liis Uiga ◽  
Ben Marshall ◽  
Mohamed Omar Mohamed ◽  
...  

2021 ◽  
Vol 11 (24) ◽  
pp. 11960
Author(s):  
Yadong Yan ◽  
Chang Cheng ◽  
Mingjun Guan ◽  
Jianan Zhang ◽  
Yu Wang

The thumb is the most important finger of the human hand and has a great influence on grasp manipulations. However, the extent to which joints other than the thumb joints affect the grasp, and thus, which joints should be included in a prosthetic hand, remains an open issue. In this paper, we focus on the metacarpophalangeal joints of the four fingers, except the thumb, which can generate flexion/extension and abduction/adduction motions. The contribution of these joints to grasping was evaluated in four aspects: grasp size, grasp force, grasp quality and grasp success rate. Six subjects participated in experiments with respect to the maximum grasp size and grasp force. The results show that possessing abduction mobility of the metacarpophalangeal joints can increase the grasp size by 4.67 ± 1.93 mm and the grasp force by 5.27 ± 4.25 N. Then, the grasping quality and success rate were tested in a simulation platform and using a robotic hand, respectively. The results show that grasp quality was promoted by 76.7% in the simulated environment with abduction mobility compared to without abduction mobility, whereas the grasp success rate was promoted by 68.3%. We believe that the results of this work can benefit the understanding of hand function and prosthetic hand design.


2021 ◽  
Author(s):  
Rim Jallouli-Khlif ◽  
Boutheina Maalej ◽  
Pierre Melchior ◽  
Nabil Derbel

Author(s):  
Francisco Gilfran A. Milfont ◽  
Luis A. Gómez-Malagón
Keyword(s):  

2021 ◽  
Author(s):  
Dayeon Kim ◽  
Subin Joo ◽  
Joonho Seo ◽  
Peter Kazanzides

Sign in / Sign up

Export Citation Format

Share Document