scholarly journals Fast texture feature extraction method based on segmentation for image retrieval

Author(s):  
Yi-Ling Chen ◽  
Tse-Wei Chen ◽  
Shao-Yi Chien
2013 ◽  
Vol 427-429 ◽  
pp. 1874-1878
Author(s):  
Guo De Wang ◽  
Zhi Sheng Jing ◽  
Guo Wei Qin ◽  
Shan Chao Tu

Wear particles recognition is a key link in the process of Ferrography analysis. Different kinds of wear particles vary greatly in texture, texture feature is one of the most important feature in wear particles recognition. Local Binary Pattern (LBP) is an efficient operator for texture description. The binary sequence of traditional LBP operator is obtained by the comparison between the gray value of the neighborhood and the gray value of the center pixel of the neighborhood, the comparison is too simple to cause the loss of the texture. In this paper, an improved LBP operator is presented for texture feature extraction and it is applied to the recognition of severe sliding particles, fatigue spall particles and laminar particles. The experimental results show that our method is an effective feature extraction method and obtains better recognition accuracy compared with other methods.


2011 ◽  
Vol 10 (3) ◽  
pp. 73-79 ◽  
Author(s):  
Jian Yang ◽  
Jingfeng Guo

Texture feature is a measure method about relationship among the pixels in local area, reflecting the changes of image space gray levels. This paper presents a texture feature extraction method based on regional average binary gray level difference co-occurrence matrix, which combined the texture structural analysis method with statistical method. Firstly, we calculate the average binary gray level difference of eight-neighbors of a pixel to get the average binary gray level difference image which expresses the variation pattern of the regional gray levels. Secondly, the regional co-occurrence matrix is constructed by using these average binary gray level differences. Finally, we extract the second-order statistic parameters reflecting the image texture feature from the regional co-occurrence matrix. Theoretical analysis and experimental results show that the image texture feature extraction method has certain accuracy and validity


Sign in / Sign up

Export Citation Format

Share Document