occurrence matrix
Recently Published Documents


TOTAL DOCUMENTS

1289
(FIVE YEARS 556)

H-INDEX

33
(FIVE YEARS 6)

2022 ◽  
Vol 16 (1) ◽  
pp. 1
Author(s):  
Lutfi Hakim ◽  
Sepyan Purnama Kristanto ◽  
Dianni Yusuf ◽  
Fitri Nur Afia
Keyword(s):  

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 195
Author(s):  
Małgorzata Domino ◽  
Marta Borowska ◽  
Anna Trojakowska ◽  
Natalia Kozłowska ◽  
Łukasz Zdrojkowski ◽  
...  

Appropriate matching of rider–horse sizes is becoming an increasingly important issue of riding horses’ care, as the human population becomes heavier. Recently, infrared thermography (IRT) was considered to be effective in differing the effect of 10.6% and 21.3% of the rider:horse bodyweight ratio, but not 10.1% and 15.3%. As IRT images contain many pixels reflecting the complexity of the body’s surface, the pixel relations were assessed by image texture analysis using histogram statistics (HS), gray-level run-length matrix (GLRLM), and gray level co-occurrence matrix (GLCM) approaches. The study aimed to determine differences in texture features of thermal images under the impact of 10–12%, >12 ≤15%, >15 <18% rider:horse bodyweight ratios, respectively. Twelve horses were ridden by each of six riders assigned to light (L), moderate (M), and heavy (H) groups. Thermal images were taken pre- and post-standard exercise and underwent conventional and texture analysis. Texture analysis required image decomposition into red, green, and blue components. Among 372 returned features, 95 HS features, 48 GLRLM features, and 96 GLCH features differed dependent on exercise; whereas 29 HS features, 16 GLRLM features, and 30 GLCH features differed dependent on bodyweight ratio. Contrary to conventional thermal features, the texture heterogeneity measures, InvDefMom, SumEntrp, Entropy, DifVarnc, and DifEntrp, expressed consistent measurable differences when the red component was considered.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 562
Author(s):  
Marcin Kociołek ◽  
Michał Kozłowski ◽  
Antonio Cardone

The perceived texture directionality is an important, not fully explored image characteristic. In many applications texture directionality detection is of fundamental importance. Several approaches have been proposed, such as the fast Fourier-based method. We recently proposed a method based on the interpolated grey-level co-occurrence matrix (iGLCM), robust to image blur and noise but slower than the Fourier-based method. Here we test the applicability of convolutional neural networks (CNNs) to texture directionality detection. To obtain the large amount of training data required, we built a training dataset consisting of synthetic textures with known directionality and varying perturbation levels. Subsequently, we defined and tested shallow and deep CNN architectures. We present the test results focusing on the CNN architectures and their robustness with respect to image perturbations. We identify the best performing CNN architecture, and compare it with the iGLCM, the Fourier and the local gradient orientation methods. We find that the accuracy of CNN is lower, yet comparable to the iGLCM, and it outperforms the other two methods. As expected, the CNN method shows the highest computing speed. Finally, we demonstrate the best performing CNN on real-life images. Visual analysis suggests that the learned patterns generalize to real-life image data. Hence, CNNs represent a promising approach for texture directionality detection, warranting further investigation.


2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Muhammad Arif ◽  
F. Ajesh ◽  
Shermin Shamsudheen ◽  
Oana Geman ◽  
Diana Izdrui ◽  
...  

Radiology is a broad subject that needs more knowledge and understanding of medical science to identify tumors accurately. The need for a tumor detection program, thus, overcomes the lack of qualified radiologists. Using magnetic resonance imaging, biomedical image processing makes it easier to detect and locate brain tumors. In this study, a segmentation and detection method for brain tumors was developed using images from the MRI sequence as an input image to identify the tumor area. This process is difficult due to the wide variety of tumor tissues in the presence of different patients, and, in most cases, the similarity within normal tissues makes the task difficult. The main goal is to classify the brain in the presence of a brain tumor or a healthy brain. The proposed system has been researched based on Berkeley’s wavelet transformation (BWT) and deep learning classifier to improve performance and simplify the process of medical image segmentation. Significant features are extracted from each segmented tissue using the gray-level-co-occurrence matrix (GLCM) method, followed by a feature optimization using a genetic algorithm. The innovative final result of the approach implemented was assessed based on accuracy, sensitivity, specificity, coefficient of dice, Jaccard’s coefficient, spatial overlap, AVME, and FoM.


2022 ◽  
Vol 23 (1) ◽  
pp. 187-199
Author(s):  
Suzani Mohamad Samuri ◽  
Try Viananda Nova ◽  
Bahbibi Rahmatullah ◽  
Shir Li Wang ◽  
Z.T Al-Qaysi

Machine learning has been the topic of interest in research related to early detection of breast cancer based on mammogram images. In this study, we compare the performance results from three (3) types of machine learning techniques: 1) Naïve Bayes (NB), 2) Neural Network (NN) and 3) Support Vector Machine (SVM) with 2000 digital mammogram images to choose the best technique that could model the relationship between the features extracted and the state of the breast (‘Normal’ or ‘Cancer’). Grey Level Co-occurrence Matrix (GLCM) which represents the two dimensions of the level variation gray in the image is used in the feature extraction process. Six (6) attributes consist of contrast, variance, standard deviation, kurtosis, mean and smoothness were computed as feature extracted and used as the inputs for the classification process. The data has been randomized and the experiment has been repeated for ten (10) times to check for the consistencies of the performance of all techniques. 70% of the data were used as the training data and another 30% used as testing data. The result after ten (10) experiments show that, Support Vector Machine (SVM) gives the most consistent results in correctly classifying the state of the breast as ‘Normal’ or ‘Cancer’, with the accuracy of 99.4%, in training and 98.76% in testing. The SVM classification model has outperformed NN and NB model in the study, and it shows that SVM is a good choice for determining the state of the breast at the early stage. ABSTRAK: Pembelajaran mesin telah menjadi topik yang diminati dalam penyelidikan yang berkaitan dengan pengesanan awal kanser payudara berdasarkan imej mamogram. Dalam kajian ini, kami membandingkan hasil prestasi dari tiga (3) jenis teknik pembelajaran mesin: 1) Naïve Bayes (NB), 2) Neural Network (NN) dan 3) Support Vector Machine (SVM) dengan 2000 imej digital mammogram hingga teknik terbaik yang dapat memodelkan hubungan antara ciri yang diekstraksi dan keadaan payudara ('Normal' atau 'Cancer') dapat diperoleh. Grey Level Co-occurrence Matrix (GLCM) yang mewakili dua dimensi variasi tahap kelabu pada gambar digunakan dalam proses pengekstrakan ciri. Enam (6) atribut terdiri dari kontras, varians, sisihan piawai, kurtosis, min dan kehalusan dihitung sebagai fitur yang diekstrak dan digunakan sebagai input untuk proses klasifikasi. Eksperimen telah diulang selama sepuluh (10) kali untuk memeriksa kesesuaian prestasi semua teknik. 70% data digunakan sebagai data latihan dan 30% lagi digunakan sebagai data ujian. Hasil setelah sepuluh (10) eksperimen menunjukkan bahawa, Support Vector Machine (SVM) memberikan hasil yang paling konsisten dalam mengklasifikasikan keadaan payudara dengan betul sebagai 'Normal' atau 'Kanser', dengan akurasi 99.4%, dalam latihan dan 98.76% dalam ujian. Model klasifikasi SVM telah mengungguli model NN dan NB dalam kajian ini, dan ia menunjukkan bahawa SVM adalah pilihan yang baik untuk menentukan keadaan payudara pada peringkat awal.


2022 ◽  
Vol 12 (1) ◽  
pp. 1-15
Author(s):  
Sanjana Tomer ◽  
Ketna Khanna ◽  
Sapna Gambhir ◽  
Mohit Gambhir

Parkinson disease (PD) is a neurological disorder where the dopaminergic neurons experience deterioration. It is caused from the death of the dopamine neurons present in the substantia nigra i.e., the mid part of the brain. The symptoms of this disease emerge slowly, the onset of the earlier stages shows some non-motor symptoms and with time motor symptoms can also be gauged. Parkinson is incurable but can be treated to improve the condition of the sufferer. No definite method for diagnosing PD has been concluded yet. However, researchers have suggested their own framework out of which MRI gave better results and is also a non-invasive method. In this study, the MRI images are used for extracting the features. For performing the feature extraction techniques Gray Level Co-occurrence Matrix and Principal Component Analysis are performed and are analysed. Feature extraction reduces the dimensionality of data. It aims to reduce the feature of data by generating new features from the original one.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012045
Author(s):  
Ishan Devdatt Kawathekar ◽  
Anu Shaju Areeckal

Abstract Lung cancer ranks very high on a global index for cancer-related casualties. With early detection of lung cancer, the rate of survival increases to 80-90%. The standard method for diagnosing lung cancer from Computed Tomography (CT) scans is by manual annotation and detection of the cancerous regions, which is a tedious task for radiologists. This paper proposes a machine learning approach for multi-class classification of the lung nodules into solid, semi-solid, and Ground Glass Object texture classes. We employ feature extraction techniques, such as gray-level co-occurrence matrix, Gabor filters, and local binary pattern, and validate the performance on the LNDb dataset. The best performing classifier displays an accuracy of 94% and an F1-score of 0.92. The proposed approach was compared with related work using the same dataset. The results are promising, and the proposed method can be used to diagnose lung cancer accurately.


2021 ◽  
pp. 551-559
Author(s):  
Ahmed Shihab Ahmed ◽  
Omer Nather Basheer ◽  
Hussein Ali Salah

Many of the researches have been successful in the field of computer-aided diagnosis because of the important results the intelligent computing approaches have achieved in this field. In this paper the robust classification method is presented, that attempts to classify the tissue suspicion region as normal or not normal by using a Fuzzy Inference System (FIS) using the Fuzzy C-Mean (FCM) clustering for fuzzification of the Gray-Level Co-Occurrence Matrix (GLCM) feature and a match shape function for fuzzification of matrix shape, then by using (T-norm) generate 729 rules (243 rules based on normal DB case, 243 rules based on benign case, 243 rules based on malignant case), after that the best Eighteen rules are selected (best 6 rules based on normal DB case, best 6 rules based on benign DB case, best 6 rules based on malignant DB case) by using genetic algorithm, then make summation for each group if the summation of 6 rules based on normal DB is greater than other summation of two group (best 6 rules based on benign DB case and best 6 rules based on malignant DB case) that mean resulted of the classification step is normal. The model approved efficiency classification rate of 97.5% of input dataset image.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Bona Hiu Yan Chow ◽  
Constantino Carlos Reyes-Aldasoro

This paper presents a computer-vision-based methodology for automatic image-based classification of 2042 training images and 284 unseen (test) images divided into 68 categories of gemstones. A series of feature extraction techniques (33 including colour histograms in the RGB, HSV and CIELAB space, local binary pattern, Haralick texture and grey-level co-occurrence matrix properties) were used in combination with different machine-learning algorithms (Logistic Regression, Linear Discriminant Analysis, K-Nearest Neighbour, Decision Tree, Random Forest, Naive Bayes and Support Vector Machine). Deep-learning classification with ResNet-18 and ResNet-50 was also investigated. The optimal combination was provided by a Random Forest algorithm with the RGB eight-bin colour histogram and local binary pattern features, with an accuracy of 69.4% on unseen images; the algorithms required 0.0165 s to process the 284 test images. These results were compared against three expert gemmologists with at least 5 years of experience in gemstone identification, who obtained accuracies between 42.6% and 66.9% and took 42–175 min to classify the test images. As expected, the human experts took much longer than the computer vision algorithms, which in addition provided, albeit marginal, higher accuracy. Although these experiments included a relatively low number of images, the superiority of computer vision over humans is in line with what has been reported in other areas of study, and it is encouraging to further explore the application in gemmology and related areas.


Sign in / Sign up

Export Citation Format

Share Document