32 Bit re-configurable RISC processor design and implementation for BETA ISA with inbuilt matrix multiplier

Author(s):  
Raj Prakash Singh ◽  
Ankit K. Vashishtha ◽  
R. Krishna
Author(s):  
Rohit Sharma ◽  
Vivek Kumar Sehgal ◽  
Nitin Nitin ◽  
Pranav Bhasker ◽  
Ishita Verma

Pipelining is the concept of overlapping of multiple instructions to perform their operations to optimize the time and ability of hardware units. This paper presents the design and implementation of 6 stage pipelined architecture for High performance 64-bit Microprocessor without Interlocked Pipeline Stages (MIPS) based Reduced Instruction set computing (RISC) processor. In this work, combining efforts of pre-fetching unit, forwarding unit, Branch and Jump predicting unit, Hazard unit are used to reduce the hazards. Low power unit is used to minimize the power. Cache Memories, other devices and especially balancing pipeline stages optimize the Speed in this work. DDR4 SDRAM (Double Data Rate type4 Synchronous Dynamic Random Access Memory) controller is employed in this pipeline to achieve high-speed data transfers and to manage the entire system efficiently. Low power, Low delay Flip flops are used in pipeline registers that implicitly enhance the performance of the system. The proposed method provides better results compared to the existing models. The simulation and synthesis results of the proposed Architecture are evaluated by Xilinx 14.7 software and supporting graphs are plotted through MATLAB tool


2021 ◽  
Author(s):  
Yunrui Zhang ◽  
Zichao Guo ◽  
Jian Li ◽  
Fan Cai ◽  
Jianyang Zhou

2015 ◽  
Vol 15 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Bikash Poduel ◽  
Prasanna Kansakar ◽  
Sujit R. Chhetri ◽  
Shashidhar Ram Joshi

This paper is delineating the design and implementation of high performance, synthesizable 32-bit pipelined Reduced Instruction Set Computer (RISC) Core. The design of the Harvard Architecture based 32-bit RISC Core involves design of 32-bit Data-path Unit, Control Unit, 32-bit Instruction Memory, 32-bit Data Memory, Register file with each register of size 32 bit. The processor is divided into Fetch, Decode, Execute and Write Back block in order to implement a four-stage pipeline. A 2*16 LCD is connected to the processor IO block to show the instruction execution sequence for demonstration in FPGA. The RISC Core is designed using Verilog HDL and VHDL and is tested in ISIM Simulator. The implementation of the processor is done in a Spartan 3E Starter Board using Xilinx ISE 14.7. All of the instructions incorporated with the processor have been tested successfully both in simulation and hardware implementation in FPGA.DOI: http://dx.doi.org/10.3126/njst.v15i1.12021  Nepal Journal of Science and TechnologyVol. 15, No.1 (2014) 81-88


Sign in / Sign up

Export Citation Format

Share Document