On the Importance of Tracking the Negative-Sequence Phase-Angle in Three-Phase Inverters with Double Synchronous Reference Frame Current Control

Author(s):  
Lucia Beloqui Larumbe ◽  
Zian Qin ◽  
Pavol Bauer
2010 ◽  
Vol 57 (3) ◽  
pp. 954-962 ◽  
Author(s):  
J.M. Espi Huerta ◽  
J. Castello-Moreno ◽  
J.R. Fischer ◽  
R. Garcia-Gil

2019 ◽  
Vol 8 (4) ◽  
pp. 2814-2822

This paper projects a high performance decoupled current control using a dq synchronous reference frame for single-phase inverter. For the three-phase inverter the conversion from AC to DC with Proportional Integral controller grants to obtain steady state error for AC Voltages and currents but has a few challenges with the single-phase systems. Hence, an orthogonal pair (β) is created by shifting the phase by one quarter cycle with respect to the real component (α) which is needed for the transformation from stationary to rotating frame. The synchronous reference frame control theory helps in controlling the AC voltage by using DC signal as the reference with the proportional integrator controllers. The implementation of the control is done with two-stage converter with LCL filter for a single-phase photovoltaic system. A modified MPPT Incremental conductance algorithm along with decoupled current control helps in regulating the active and reactive power infused into the grid where the power factor is improved, the efficiency of the system is increased above 95% and total harmonic distortion for current is also reduced to3%. The results have been validated using MATLAB.


2018 ◽  
Vol 18 (1) ◽  
pp. 35 ◽  
Author(s):  
Rofiatul Izah ◽  
Subiyanto Subiyanto ◽  
Dhidik Prastiyanto

Synchronous Reference Frame Phase Locked Loop (SRF PLL) has been widely used for synchronization three-phase grid-connected photovoltaic (PV) system. On the grid fault, SRF PLL distorted by negative sequence component and grid harmonic that caused an error in estimating parameter because of ripple and oscillation. This work combined SRF PLL with Dual Second Order Generalized Integrator (DSOGI) and filter to minimize ripple and minimize oscillation in the phase estimation and frequency estimation. DSOGI was used for filtering and obtaining the 90o shifted versions from the vαβ signals. These signals (vαβ) were generated from three phase grid voltage signal using Clarke transform. The vαβ signal was the inputs to the positive-sequence calculator (PSC). The positive-sequence vαβ was transformed to the dq synchronous reference frame and became an input to SRF-PLL to create the estimation frequency. This estimation frequency from SRF PLL was filtered by the low-pass filter to decrease grid harmonic. Moreover, the output of low-pass filter was a frequency adaptive. The performance of DSOGI PLL with filter is compared with DSOGI PLL, SRF PLL, and IEEE standard 1547(TM)-2003. The improvement of DSOGI PLL with filter gave better performances than DSOGI PLL and SRF PLLbecause it minimized ripples and oscillations in the phase and frequency estimations.


2013 ◽  
Vol 805-806 ◽  
pp. 430-435
Author(s):  
Chang Xi Huang ◽  
Shu Ying Yang ◽  
Liu Wei Chen

Unbalanced input voltages would make doubly fed induction generator (DFIG)-based wind turbine operating performance deteriorate, such as shaft tremble, temperature increasing, and so on, even make it cut out of the power grid. Meanwhile, without proper control the power ripples generated from wind turbines may further aggravate power grid. Considering the unbalanced conditions, DFIG was modeled in dual synchronous reference frame (SRF), namely the positive one and the negative one, based on which the dual PI current controllers were designed. To implement the dual current control, the sensing variables were divided into positive and negative sequence components, which were controlled in positive and negative SRF respectively. At the same time, to synchronize with the positive and negative sequence voltage components, a phase latch loop (PLL) control was designed. Experimental results on 11kW DFIG wind turbine test bed validated the designed control system.


Sign in / Sign up

Export Citation Format

Share Document