Low-level vision treatments inspired from human visual system

Author(s):  
A. Beghdadi ◽  
K. Belkacem-Boussaid ◽  
A. Boudraa
1992 ◽  
Vol 4 (4) ◽  
pp. 573-589 ◽  
Author(s):  
Daniel Kersten ◽  
Heinrich H. Bülthoff ◽  
Bennett L. Schwartz ◽  
Kenneth J. Kurtz

It is well known that the human visual system can reconstruct depth from simple random-dot displays given binocular disparity or motion information. This fact has lent support to the notion that stereo and structure from motion systems rely on low-level primitives derived from image intensities. In contrast, the judgment of surface transparency is often considered to be a higher-level visual process that, in addition to pictorial cues, utilizes stereo and motion information to separate the transparent from the opaque parts. We describe a new illusion and present psychophysical results that question this sequential view by showing that depth from transparency and opacity can override the bias to see rigid motion. The brain's computation of transparency may involve a two-way interaction with the computation of structure from motion.


2010 ◽  
Vol 114 (7) ◽  
pp. 758-773 ◽  
Author(s):  
A. Benoit ◽  
A. Caplier ◽  
B. Durette ◽  
J. Herault

1993 ◽  
Vol 10 (4) ◽  
pp. 585-596 ◽  
Author(s):  
Lawrence K. Cormack ◽  
Scott B. Stevenson ◽  
Clifton M. Schor

AbstractTraditionally, it has been thought that the processing of binocular disparity for the perception of stereoscopic depth is accomplished via three types of disparity-selective channels – “near,” “far,” and “tuned.” More recent evidence challenges this notion. We have derived disparity-tuning functions psychophysically using a subthreshold summation (i.e. low-level masking) technique. We measured correlation-detection thresholds for dynamic random-element stereograms containing either one or two surfaces in depth. The resulting disparity-tuning functions show an opponent-type profile, indicating the presence of inhibition between disparity-tuned units in the visual system. Moreover, there is clear inhibition between disparities of the same sign, obviating a strict adherence to near-far opponency. These results compare favorably with tuning functions derived psychophysically using an adaptation technique, and with the tuning profiles from published single-unit recordings. Our results suggests a continuum of overlapping disparity-tuned channels, which is consistent with recent physiological evidence as well as models based on other psychophysical data.


2016 ◽  
Vol 283 (1830) ◽  
pp. 20160383 ◽  
Author(s):  
Alexander A. Muryy ◽  
Roland W. Fleming ◽  
Andrew E. Welchman

Visually identifying glossy surfaces can be crucial for survival (e.g. ice patches on a road), yet estimating gloss is computationally challenging for both human and machine vision. Here, we demonstrate that human gloss perception exploits some surprisingly simple binocular fusion signals, which are likely available early in the visual cortex. In particular, we show that the unusual disparity gradients and vertical offsets produced by reflections create distinctive ‘proto-rivalrous’ (barely fusible) image regions that are a critical indicator of gloss. We find that manipulating the gradients and vertical components of binocular disparities yields predictable changes in material appearance. Removing or occluding proto-rivalrous signals makes surfaces look matte, while artificially adding such signals to images makes them appear glossy. This suggests that the human visual system has internalized the idiosyncratic binocular fusion characteristics of glossy surfaces, providing a straightforward means of estimating surface attributes using low-level image signals.


2020 ◽  
Vol 2020 (1) ◽  
pp. 60-64
Author(s):  
Altynay Kadyrova ◽  
Majid Ansari-Asl ◽  
Eva Maria Valero Benito

Colour is one of the most important appearance attributes in a variety of fields including both science and industry. The focus of this work is on cosmetics field and specifically on the performance of the human visual system on the selection of foundation makeup colour that best matches with the human skin colour. In many cases, colour evaluations tend to be subjective and vary from person to person thereby producing challenging problems to quantify colour for objective evaluations and measurements. Although many researches have been done on colour quantification in last few decades, to the best of our knowledge, this is the first study to evaluate objectively a consumer's visual system in skin colour matching through a psychophysical experiment under different illuminations exploiting spectral measurements. In this paper, the experiment setup is discussed and the results from the experiment are presented. The correlation between observers' skin colour evaluations by using PANTONE Skin Tone Guide samples and spectroradiometer is assessed. Moreover, inter and intra observer variability are considered and commented. The results reveal differences between nine ethnic groups, between two genders, and between the measurements under two illuminants (i.e.D65 and F (fluorescent)). The results further show that skin colour assessment was done better under D65 than under F illuminant. The human visual system was three times worse than instrument in colour matching in terms of colour difference between skin and PANTONE Skin Tone Guide samples. The observers tend to choose lighter, less reddish, and consequently paler colours as the best match to their skin colour. These results have practical applications. They can be used to design, for example, an application for foundation colour selection based on correlation between colour measurements and human visual system based subjective evaluations.


Sign in / Sign up

Export Citation Format

Share Document