Blur-invariant traffic sign recognition using compact local phase quantization

Author(s):  
Saleh Aly ◽  
Daisuku Deguchi ◽  
Hiroshi Murase
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Christine Dewi ◽  
Rung-Ching Chen ◽  
Yan-Ting Liu ◽  
Xiaoyi Jiang ◽  
Kristoko Dwi Hartomo

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 686
Author(s):  
Ke Zhou ◽  
Yufei Zhan ◽  
Dongmei Fu

Traffic sign recognition in poor environments has always been a challenge in self-driving. Although a few works have achieved good results in the field of traffic sign recognition, there is currently a lack of traffic sign benchmarks containing many complex factors and a robust network. In this paper, we propose an ice environment traffic sign recognition benchmark (ITSRB) and detection benchmark (ITSDB), marked in the COCO2017 format. The benchmarks include 5806 images with 43,290 traffic sign instances with different climate, light, time, and occlusion conditions. Second, we tested the robustness of the Libra-RCNN and HRNetv2p on the ITSDB compared with Faster-RCNN. The Libra-RCNN performed well and proved that our ITSDB dataset did increase the challenge in this task. Third, we propose an attention network based on high-resolution traffic sign classification (PFANet), and conduct ablation research on the design parallel fusion attention module. Experiments show that our representation reached 93.57% accuracy in ITSRB, and performed as well as the newest and most effective networks in the German traffic sign recognition dataset (GTSRB).


Author(s):  
Tianjiao Huo ◽  
Jiaqi Fan ◽  
Xin Li ◽  
Hong Chen ◽  
Bingzhao Gao ◽  
...  

Author(s):  
Trung-Hieu Nguyen ◽  
Vu-Hoang Tran ◽  
Van-Dung Do ◽  
Van-Thuyen Ngo ◽  
Thanh-Thanh Ngo-Quang

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ji-Yong An ◽  
Fan-Rong Meng ◽  
Zhu-Hong You ◽  
Yu-Hong Fang ◽  
Yu-Jun Zhao ◽  
...  

We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments onYeastandHumandatasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on theYeastdataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research.


Sign in / Sign up

Export Citation Format

Share Document