Evaluation of Ground Slipperiness During Collision Using MEMS Local Slip Sensor

Author(s):  
Taiyu Okatani ◽  
Isao Shimoyama
Keyword(s):  
2006 ◽  
Vol 34 (4) ◽  
pp. 237-255 ◽  
Author(s):  
M. Kuwajima ◽  
M. Koishi ◽  
J. Sugimura

Abstract This paper describes experimental and analytical studies of the dependence of tire friction on the surface roughness of pavement. Abrasive papers were adopted as representative of the microscopic surface roughness of pavement surfaces. The rolling∕sliding friction of tire tread rubber against these abrasive papers were measured at low slip velocities. Experimental results indicated that rolling∕sliding frictional characteristics depended on the surface roughness. In order to examine the interfacial phenomena between rubber and the abrasive papers, real contact length, partial slip, and apparent friction coefficient under vertical load and tangential force were analyzed with two-dimensional explicit finite element analysis in which slip-velocity-dependent frictional coefficients were considered. Finite element method results indicated that the sum of real contact area and local partial slip were larger for finer surfaces under the same normal and tangential forces. In addition, the velocity-dependent friction enhanced local slip, where the dependence of local slip on surface roughness was pronounced. It proved that rolling∕sliding friction at low slip ratio was affected by local frictional behavior at microslip regions at asperity contacts.


1965 ◽  
Vol 87 (1) ◽  
pp. 134-141 ◽  
Author(s):  
F. J. Moody

A theoretical model is developed for predicting the maximum flow rate of a single component, two-phase mixture. It is based upon annular flow, uniform linear velocities of each phase, and equilibrium between liquid and vapor. Flow rate is maximized with respect to local slip ratio and static pressure for known stagnation conditions. Graphs are presented giving maximum steam/water flow rates for: local static pressures between 25 and 3,000 psia, with local qualities from 0.01 to 1.00; local stagnation pressures and enthalpies which cover the range of saturation states.


Author(s):  
F Eghtedari ◽  
S H Hopkins ◽  
D T Pham

This paper describes the mathematical and computer modelling of a photoelastic sensor for slip detection. The main components of the sensor are a photoelastic transducer and a solid state camera. When under stress, the photoelastic transducer generates optical fringe patterns which are captured digitally by the camera. The model developed encompasses the mechanical and optical behaviours of the photoelastic transducer and the switching characteristics of the camera pixels. The model has been employed to study the effects of different design parameters on the sensor's slip resolution.


2021 ◽  
Author(s):  
Hitoshi Moriyama ◽  
Ryo Sakura ◽  
Takashi Yamaguchi ◽  
Takai Toshikazu ◽  
Yuta Yamamoto

<p>Welded joints is adopted rather than bolted joints for megastructure’s connections because the former can carry large force. However, the former has several problems, such as quality control of welding in situ, which the latter can solve. By contrast, as the load transfer ratio of each bolt becomes uneven proportionally to the number of bolts, local slip around extreme bolts occurs before the whole slip. Extreme bolts to which a large shear force is applied will break before other bolts. For utilizing the strength of all bolts, the problem is solved by improving shear deformation capacity in faying surface with novel surface treatment. Here, the treatment concepts were explored, and the coating’s effectiveness was evaluated through friction tests. The deformation capacity can be twice or more than that of conventional treatment, and the slip coefficient doesn’t depend on contact pressure. These features have the advantage to give stable slip behaviour.</p>


2021 ◽  
Vol 202 ◽  
pp. 68-79 ◽  
Author(s):  
Shuozhi Xu ◽  
Yanqing Su ◽  
Wu-Rong Jian ◽  
Irene J. Beyerlein
Keyword(s):  

2020 ◽  
Vol 134 ◽  
pp. 105518
Author(s):  
Riccardo Fincato ◽  
Seiichiro Tsutsumi ◽  
Tatsuo Sakai ◽  
Kenjiro Terada

2015 ◽  
Vol 25 (12) ◽  
pp. 125002 ◽  
Author(s):  
Anvesh Gaddam ◽  
Mayank Garg ◽  
Amit Agrawal ◽  
Suhas S Joshi

Sign in / Sign up

Export Citation Format

Share Document