Computational Depth Sensing : Toward high-performance commodity depth cameras

2017 ◽  
Vol 34 (3) ◽  
pp. 55-68 ◽  
Author(s):  
Zhiwei Xiong ◽  
Yueyi Zhang ◽  
Feng Wu ◽  
Wenjun Zeng
Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 866 ◽  
Author(s):  
Tanguy Ophoff ◽  
Kristof Van Beeck ◽  
Toon Goedemé

In this paper, we investigate whether fusing depth information on top of normal RGB data for camera-based object detection can help to increase the performance of current state-of-the-art single-shot detection networks. Indeed, depth sensing is easily acquired using depth cameras such as a Kinect or stereo setups. We investigate the optimal manner to perform this sensor fusion with a special focus on lightweight single-pass convolutional neural network (CNN) architectures, enabling real-time processing on limited hardware. For this, we implement a network architecture allowing us to parameterize at which network layer both information sources are fused together. We performed exhaustive experiments to determine the optimal fusion point in the network, from which we can conclude that fusing towards the mid to late layers provides the best results. Our best fusion models significantly outperform the baseline RGB network in both accuracy and localization of the detections.


2016 ◽  
Vol 55 (01) ◽  
pp. 70-78 ◽  
Author(s):  
B. Jansen ◽  
B. Bonnechère ◽  
M. Oravec ◽  
P. Jarmila ◽  
S. Van Sint Jan ◽  
...  

SummaryIntroduction: This article is part of the Focus Theme of Methods of Information in Medicine on “Methodologies, Models and Algorithms for Patients Rehabilitation”. Objectives: This paper presents a camera based method for identifying the patient and detecting interactions between the patient and the therapist during therapy. Detecting interactions helps to discriminate between active and passive motion of the patient as well as to estimate the accuracy of the skeletal data. Methods: Continuous face recognition is used to detect, recognize and track the patient with other people in the scene (e.g. the therapist, or a clinician). We use a method based on local binary patterns (LBP). After identifying users in the scene we identify interactions between the patient and other people. We use a depth map/point cloud for estimating the distance between two people. Our method uses the association of depth regions to user identities and computes the minimal distance between the regions. Results: Our results show state-of-the-art performance of real-time face recognition using low-resolution images that is sufficient to use in adaptive systems. Our proposed approach for detecting interactions shows 91.9% overall recognition accuracy what is sufficient for applications in the context of serious games. We also discuss limitations of the proposed method as well as general limitations of using depth cameras for serious games. Conclusions: We introduced a new method for frame-by-frame automated identification of the patient and labeling reliable sequences of the patient’s data recorded during rehabilitation (games). Our method improves automated rehabilitation systems by detecting the identity of the patient as well as of the therapist and by detecting the distance between both over time.


2020 ◽  
Vol 27 ◽  
pp. 112-115
Author(s):  
Martin Ovsík ◽  
Michal Staněk ◽  
Adam Dočkal ◽  
Petr Fluxa

Cross-linking is a process in which polymer chains are associated through chemical bonds. The cross-linking level can be adjusted by the irradiation dosage and often by means of a cross-linking booster. The polymer additional cross-linking influences the surface nano and micro layers in the way comparable to metals during the thermal and chemical-thermal treatments. Polybutylene terephthalate (PBT) can be found in a group of structural polymers, which are often used in industry, especially in automotive. Applying the technology of electron radiation induces a creation of 3D network structure, which improves the local mechanical properties. These were later measured by a depth sensing indentation (DSI) test. This state of the art method is based on immediate detection of indentation depth in relation to applied force. The creation of 3D network caused an increase in nano-mechanical properties values, such as indentation hardness and indentation modulus, in comparison to the virgin material. The indentation hardness rose by 80%, while the indentation modulus elevated by 62%. The selected structural materials, e.g. PBT, were modified by the electron irradiation in a positive way and as such could be moved to a group of high performance materials.


2013 ◽  
Vol 586 ◽  
pp. 218-221 ◽  
Author(s):  
Martin Ovsik ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Martin Bednarik ◽  
...  

The polymer additional cross-linking influences the surface nano and micro layers in the way comparable to metals during the thermal and chemical-thermal treatments (e.g. surface hardening, cementation). Our research confirms the comparable properties of surface irradiated polyamide 6 (PA6) with high performance polymers. The surface layer of polymer material such as polyamide 6 is modified by β – radiation. Material properties of the surface layer created are measured by microhardness test using the DSI method (Depth Sensing Indentation). The influence of irradiation dose on mechanical properties (materials parameter) of PA6 is a subject of this research.


2020 ◽  
Vol 39 (10-11) ◽  
pp. 1346-1364
Author(s):  
Amado Antonini ◽  
Winter Guerra ◽  
Varun Murali ◽  
Thomas Sayre-McCord ◽  
Sertac Karaman

This article describes the Blackbird unmanned aerial vehicle (UAV) Dataset, a large-scale suite of sensor data and corresponding ground truth from a custom-built quadrotor platform equipped with an inertial measurement unit (IMU), rotor tachometers, and virtual color, grayscale, and depth cameras. Motivated by the increasing demand for agile, autonomous operation of aerial vehicles, this dataset is designed to facilitate the development and evaluation of high-performance UAV perception algorithms. The dataset contains over 10 hours of data from our quadrotor tracing 18 different trajectories at varying maximum speeds (0.5 to 13.8 ms-1) through 5 different visual environments for a total of 176 unique flights. For each flight, we provide 120 Hz grayscale, 60 Hz RGB-D, and 60 Hz semantically segmented images from forward stereo and downward-facing photorealistic virtual cameras in addition to 100 Hz IMU, ~190 Hz motor speed sensors, and 360 Hz millimeter-accurate motion capture ground truth. The Blackbird UAV dataset is therefore well suited to the development of algorithms for visual inertial navigation, 3D reconstruction, and depth estimation. As a benchmark for future algorithms, the performance of two state-of-the-art visual odometry algorithms are reported and scripts for comparing against the benchmarks are included with the dataset. The dataset is available for download at http://blackbird-dataset.mit.edu/ .


Author(s):  
Xiaoqin Zhou ◽  
Xiaofeng Liu ◽  
Aimin Jiang ◽  
Bin Yan ◽  
Chenguang Yang

Depth-sensing technology has led to broad applications of inexpensive depth cameras that can capture human motion and scenes in 3D space. Background subtraction algorithms can be improved by fusing color and depth cues, thereby allowing many issues encountered in classical color segmentation to be solved. In this paper, we propose a new fusion method that combines depth and color information for foreground segmentation based on an advanced color-based algorithm. First, a background model and a depth model are developed. Then, based on these models, we propose a new updating strategy that can eliminate ghosting and black shadows almost completely. Extensive experiments have been performed to compare the proposed algorithm with other, conventional RGB-D algorithms. The experimental results suggest that our method extracts foregrounds with higher effectiveness and efficiency.


Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Author(s):  
J W Steeds ◽  
R Vincent

We review the analytical powers which will become more widely available as medium voltage (200-300kV) TEMs with facilities for CBED on a nanometre scale come onto the market. Of course, high performance cold field emission STEMs have now been in operation for about twenty years, but it is only in relatively few laboratories that special modification has permitted the performance of CBED experiments. Most notable amongst these pioneering projects is the work in Arizona by Cowley and Spence and, more recently, that in Cambridge by Rodenburg and McMullan.There are a large number of potential advantages of a high intensity, small diameter, focussed probe. We discuss first the advantages for probes larger than the projected unit cell of the crystal under investigation. In this situation we are able to perform CBED on local regions of good crystallinity. Zone axis patterns often contain information which is very sensitive to thickness changes as small as 5nm. In conventional CBED, with a lOnm source, it is very likely that the information will be degraded by thickness averaging within the illuminated area.


Sign in / Sign up

Export Citation Format

Share Document