indentation modulus
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 64)

H-INDEX

23
(FIVE YEARS 5)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 223
Author(s):  
Lesa Brown ◽  
Catherine S. Stephens ◽  
Paul G. Allison ◽  
Florence Sanchez

The use of carbon nanofibers (CNFs) in cement systems has received significant interest over the last decade due to their nanoscale reinforcing potential. However, despite many reports on the formation of localized CNF clusters, their effect on the cement paste micromechanical properties and relation to the mechanical response at the macroscopic scale are still not fully understood. In this study, grid nanoindentation coupled with scanning electron microscopy and energy dispersive spectroscopy was used to determine the local elastic indentation modulus and hardness of a portland cement paste containing 0.2% CNFs with sub-micro and microscale CNF clusters. The presence of low stiffness and porous assemblage of phases (modulus of 15–25 GPa) was identified in the cement paste with CNFs and was attributed primarily to the interfacial zone surrounding the CNF clusters. The CNFs favored the formation of higher modulus C–S–H phases (>30 GPa) in the bulk paste at the expense of the lower stiffness C–S–H. Nanoindentation results combined with a microscale–macroscale upscaling homogenization method further revealed an elastic modulus of the CNF clusters in the range from 18 to 21 GPa, indicating that the CNF clusters acted as compliant inclusions relative to the cement paste.


2022 ◽  
Vol 11 (1) ◽  
pp. 312-320
Author(s):  
Yousef Murtaja ◽  
Lubomír Lapčík ◽  
Harun Sepetcioglu ◽  
Jakub Vlček ◽  
Barbora Lapčíková ◽  
...  

Abstract Two different nanosized mineral fillers (nano calcium carbonate and nanoclay) were used in the high density poly(ethylene) (HDPE) composites pilot plant production. Structural and mechanical properties of the prepared composites were examined in this study. The homogenous filler distribution was confirmed in the tested samples by scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy analyses. The fillers’ fortifying effect on polymer composites’ mechanical performance was confirmed as indicated by the increased elastic modulus and indentation modulus. Additionally, the possible modulation of the plastic-elastic mechanical behavior was confirmed by the type of the filler as well as its concentration used in the final composites testing articles.


2021 ◽  
Vol 11 (24) ◽  
pp. 12065
Author(s):  
Maria Dimitriadi ◽  
Aikaterini Petropoulou ◽  
Maria Zafiropoulou ◽  
Spiros Zinelis ◽  
George Eliades

New self-adhesive resin composite luting agents have currently been developed, claiming improved properties. The study aimed to evaluate the composition, degree of conversion, and mechanical properties of Panavia SA Plus (PSP), Panavia SA Universal (PSU), SpeedCem Plus (SPC) and TheraCem Ca (THC), with the resin luting agent Panavia V5 (PV5) serving as a control. The structure of the materials was studied by FTIR spectroscopy and SEM/EDX spectrometry. Disk-shaped specimens were prepared from each material under dual- and self-curing modes (n = 5/mode and material). After a 3-week storage period (dark/37 °C/80%RH) the Martens hardness, indentation modulus, elastic index, and creep were determined by instrumented indentation testing (IIT), while the degree of conversion was assessed by FTIR spectroscopy. Statistical analysis was performed by 2-way ANOVA and post-hoc testing (α = 0.05). All materials were based on aromatic monomers, except for SPC. Fillers with potentially bioactive Ca-glasses were identified in SPC and THC, which showed the highest P/Si ratio. The dual-curing mode demonstrated superior performance in all properties. Differences between materials within each curing mode were limited to SPC, THC (highest conversion) and PSA, PSU, SPC (highest elastic index) for dual-curing, and THC (lowest hardness and elastic index). The results confirmed a lower self-curing conversion in these materials, which may affect some of the mechanical properties tested.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5910
Author(s):  
Martin Ovsik ◽  
Michal Stanek ◽  
Adam Dockal ◽  
Petr Fluxa ◽  
Vlastimil Chalupa

This study describes the influence of polymer flow length on mechanical properties of tested polymer, specifically polycarbonate. The flow length was examined in a spiral shaped mould. The mould cavity’s surface was machined by several methods, which led to differing roughness of the surface. The cavity was finished by milling, grinding and polishing. In order to thoroughly understand the influence of the mould surface quality on the flow length, varying processing parameters, specifically the pressure, were used. The polymer part was divided into several segments, in which the micro-mechanical properties, such as hardness and indentation modulus were measured. The results of this study provide interesting data concerning the flow length, which was up to 3% longer for rougher surfaces, but shorter in cavities with polished surface. These results are in disagreement with the commonly practiced theory, which states that better surface quality leads to greater flow length. Furthermore, evaluation of the micro-mechanical properties measured along the flow path demonstrated significant variance in researched properties, which increased by 35% (indentation hardness) and 86% by indentation modulus) in latter segments of the spiral in comparison with the gate.


2021 ◽  
Author(s):  
Yining Gao ◽  
Peng Liu ◽  
Chuanlin Hu ◽  
Lu Yang

Abstract "Mortar" and "brick" structure is a general model to construct nanocomposites. A film with "brick-and-mortar" structure was prepared by LBL (Layer-by-Layer) technique using polyvinyl alcohol (PVA) and polymethyl methacrylate (PMMA) as the flexible material or "mortar" and mica as the rigid material or "brick". The film deposited on a glass slide after self-assembly cycles was ~3μm thick with an uneven, wavy surface. The film showed enhanced mechanical properties with the hardness and indentation modulus values up to 6.14 GPa and 68.41 GPa, respectively. It was found that the hardness and elastic toughness depended on the ratio of mica, the number of self-assembly cycles, and the pretreatment method of the mica suspension. The self-assembly process was believed to be attributable to the hydrogen bonds between the silanol groups of mica and the hydroxyl groups of PVA and carbonyl groups of PMMA.


2021 ◽  
Vol 324 ◽  
pp. 15-20
Author(s):  
Tong Chen ◽  
Shinji Koyama

Surface oxidation of pure titanium was performed in the atmosphere to increase the mechanical properties. The effect of oxidation temperature (650-900°C) for 2 h on the microstructure, composition, and mechanical properties of the treated samples was investigated using X-ray diffraction, hardness tester and indentation modulus tester, respectively. The diffusion rate of oxygen in grade-2 pure Ti with different processing temperatures discussed in present research. Based on a result of the examination, the surface hardness was increased first and then decreased as the processing temperature increased. And when the processing temperature at 850°C, the surface hardness reached the maximum value. In addition, the Young's modulus of the treated samples also showed a maximum value of 198.9 GPa for a processing temperature of 850°C. An oxidation condition of 850°C is considered optimal as it provides sufficiently high hardness during practical use.


2021 ◽  
Vol 56 (33) ◽  
pp. 18740-18748
Author(s):  
L. Lorenz ◽  
T. Chudoba ◽  
S. Makowski ◽  
M. Zawischa ◽  
F. Schaller ◽  
...  

AbstractCoatings used in tribological applications often exhibit high hardness and stiffness to achieve high wear resistance. One coating characterization method frequently used is nanoindentation which allows the determination of indentation hardness and indentation modulus among other material properties. The indentation modulus describes the elastic surface behavior during indentation and is, among hardness, a direct indicator for wear resistance. To obtain the true indentation modulus of a coating, it must be measured with varying loads and then extrapolated to zero load. Current recommendation of the standard ISO 14577-4:2016 is a linear extrapolation which fits poorly for nonlinear curves. Such nonlinear curves are commonly found for high hardness mismatches between coating and substrate, for example, superhard tetrahedral amorphous carbon coatings (ta-C) on a steel substrate. In this study, we present a new empirical fit model, henceforth named sigmoid. This fit model is compared to several existing fit models described in the literature using a large number of nanoindentation measurements on ta-C coatings with wide ranges of indentation modulus and coating thickness. This is done by employing a user-independent and model agnostic fitting methodology. It is shown that the sigmoid model outperforms all other models in the combination of goodness of fit and stability of fit. Furthermore, we demonstrate that the sigmoid model’s fit parameter directly correlates with coating thickness and thus allows for a new approach of determining ta-C coating thickness from nanoindentation.


Author(s):  
Hideyuki Sakoda ◽  
Miyuki Uematsu ◽  
Yoshihiro Okamoto ◽  
Yuji Haishima

Poly-ether-ether-ketone (PEEK) and carbon fiber reinforced PEEK as orthopedic implant materials exhibit excellent material properties. Although delamination of PEEK materials has been reported in knee joint wear research, the delamination resistance behavior remains unclear. In this study, the delamination resistance of PEEK materials was investigated; these materials were compared to ultra-high molecular weight polyethylene (UHMWPE). The results of a ball-on-flat type delamination test indicated that the PEEK materials underwent delamination considerably earlier than UHMWPE, and the contact area of the PEEK materials was smaller than that of UHMWPE. Moreover, the indentation modulus, hardness, and coefficient of friction were higher for PEEK materials than for UHMWPE. The reduced tendency of PEEK materials to undergo deformation to mitigate stress concentration at low conformity contact conditions contributed to their inferior delamination resistance compared to that of UHMWPE. The delamination resistance of the PEEK materials was equivalent to that of degraded UHMWPE, which highlights the risk of delamination of PEEK implants in a clinical context. Consequently, when using PEEK materials as an implant component loaded at a low conformity contact condition, the material selection and component design must be carefully considered. Overall, the results of this study can help guide the future development of PEEK-based implants.


Author(s):  
Matthias Kelch ◽  
Bogna Stawarczyk ◽  
Felicitas Mayinger

Abstract Objective To investigate the degree of conversion (DC), Martens hardness (HM), elastic indentation modulus (EIT), and biaxial flexural strength (BFS) of six dual-polymerizing resin composite luting materials initially and after 2 and 7 days of aging. Materials and methods Specimens fabricated from Bifix QM (BIF; VOCO), Calibra Ceram (CAL; Dentsply Sirona), DuoCem (DUO; Coltène/Whaledent), G-CEM LinkForce (GCE; GC Europe), PANAVIA V5 (PAN; Kuraray Europe), and Variolink Esthetic DC (VAR; Ivoclar Vivadent) (n = 12 per material) were light-polymerized through 1 mm thick discs (Celtra Duo, Dentsply Sirona). DC, HM, and EIT were recorded directly after fabrication, and after 2 and 7 days of aging. As a final test, BFS was measured. Univariate ANOVAs, Kruskal–Wallis, Mann–Whitney U, Friedman, and Wilcoxon tests, and Weibull modulus were computed (p < 0.05). Results While CAL presented low DC, HM, EIT, and BFS values, DUO and BIF showed high results. Highest Weibull moduli were observed for VAR and DUO. DC and Martens parameters increased between the initial measurement and 2 days of aging, while aging for 7 days provided no further improvement. Conclusions The choice of dual-polymerizing resin composite luting material plays an important role regarding chemical and mechanical properties, especially with patients sensitive to toxicological issues. DUO may be recommended for bonding fixed dental prostheses, as it demonstrated significantly highest and reliable results regarding DC, HM, and BFS. As DC and HM showed an increase in the first 48 h, it may be assumed that the polymerization reaction is not completed directly after initial polymerization, which is of practical importance to dentists and patients. Clinical relevance The chemical and mechanical properties of dual-polymerizing resin composite luting materials influence the overall stability and long-term performance of the restoration.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2225
Author(s):  
Alessia Melelli ◽  
Delphin Pantaloni ◽  
Eric Balnois ◽  
Olivier Arnould ◽  
Frédéric Jamme ◽  
...  

PLA-flax non-woven composites are promising materials, coupling high performance and possible degradation at their end of life. To explore their ageing mechanisms during garden composting, microstructural investigations were carried out through scanning electron microscopy (SEM) and atomic force microscopy (AFM). We observe that flax fibres preferentially degrade ‘inwards’ from the edge to the core of the composite. In addition, progressive erosion of the cell walls occurs within the fibres themselves, ‘outwards’ from the central lumen to the periphery primary wall. This preferential degradation is reflected in the decrease in indentation modulus from around 23 GPa for fibres located in the preserved core of the composite to 3–4 GPa for the remaining outer-most cell wall crowns located at the edge of the sample that is in contact with the compost. Ageing of the PLA matrix is less drastic with a relatively stable indentation modulus. Nevertheless, a change in the PLA morphology, a significant decrease in its roughness and increase of porosity, can be observed towards the edge of the sample, in comparison to the core. This work highlights the important role of intrinsic fibre porosity, called lumen, which is suspected to be a major variable of the compost ageing process, providing pathways of entry for moisture and microorganisms that are involved in cell wall degradation.


Sign in / Sign up

Export Citation Format

Share Document