Low voltage and low leakage flip-flops based on transmission gate in nanometer CMOS processes

Author(s):  
Xiaoying Yu ◽  
Xiaoyan Luo ◽  
Jianping Hu
Author(s):  
Ian Kearney ◽  
Hank Sung

Abstract Low voltage power MOSFETs often integrate voltage spike protection and gate oxide ESD protection. The basic concept of complete-static protection for the power MOSFETs is the prevention of static build-up where possible and the quick, reliable removal of existing charges. The power MOSFET gate is equivalent to a low voltage low leakage capacitor. The capacitor plates are formed primarily by the silicon gate and source metallization. The capacitor dielectric is the silicon oxide gate insulation. Smaller devices have less capacitance and require less charge per volt and are therefore more susceptible to ESD than larger MOSFETs. A FemtoFETTM is an ultra-small, low on-resistance MOSFET transistor for space-constrained handheld applications, such as smartphones and tablets. An ESD event, for example, between a fingertip and the communication-port connectors of a cell phone or tablet may cause permanent system damage. Through electrical characterization and global isolation by active photon emission, the authors identify and distinguish ESD failures. Thermographic analysis provided additional insight enabling further separation of ESD failmodes. This paper emphasizes the role of failure analysis in new product development from the create phase through to product ramp. Coupled with device electrical simulation, the analysis observations led to further design enhancement.


1999 ◽  
Vol 14 (11) ◽  
pp. 4395-4401 ◽  
Author(s):  
Seung-Hyun Kim ◽  
D. J. Kim ◽  
K. M. Lee ◽  
M. Park ◽  
A. I. Kingon ◽  
...  

Ferroelectric SrBi2Ta2O9 (SBT) thin films on Pt/ZrO2/SiO2/Si were successfully prepared by using an alkanolamine-modified chemical solution deposition method. It was observed that alkanolamine provided stability to the SBT solution by retarding the hydrolysis and condensation rates. The crystallinity and the microstructure of the SBT thin films improved with increasing annealing temperature and were strongly correlated with the ferroelectric properties of the SBT thin films. The films annealed at 800 °C exhibited low leakage current density, low voltage saturation, high remanent polarization, and good fatigue characteristics at least up to 1010 switching cycles, indicating favorable behavior for memory applications.


2020 ◽  
Vol 105 (2) ◽  
pp. 263-274
Author(s):  
Nima Eslami ◽  
Behzad Ebrahimi ◽  
Erfan Shakouri ◽  
Deniz Najafi
Keyword(s):  

2010 ◽  
Vol 29-32 ◽  
pp. 1919-1924 ◽  
Author(s):  
Wei Qiang Zhang ◽  
Yu Zhang ◽  
Jian Ping Hu

With the decrease of the power supply voltage, the thickness of the gate oxide has been also scaled down in CMOS technologies using gate oxide materials. The leakage dissipation through the gate oxide is becoming an important component of power consumption in currently used nanometer CMOS processes without metal gate structure. Base on the fact that PMOS transistors have an order of magnitude smaller gate leakage than NMOS ones, this paper propose a P-type efficient charge recovery logic (P-ECRL) to reduce leakage dissipations in nanometer CMOS processes with gate oxide materials. For an example, a J-K flip-flop and a mode-10 counter using four-phase P-ECRL circuits are verified. All circuits are simulated using 90nm and 45nm CMOS processes with gate oxide materials. The proposed P-ECRL circuits show significant improvement in terms of power consumption over the traditional N-type ECRL counterparts.


Sign in / Sign up

Export Citation Format

Share Document