Demonstration of a 30 Gbps intensity modulation direct detection OFDM-based passive optical network

Author(s):  
Saikrishna Reddy K ◽  
Deepa Venkitesh ◽  
Colm Browning ◽  
Liam P Barry
2018 ◽  
pp. 1-6
Author(s):  
Hum Nath Parajuli ◽  
Eszter Udvary

Future 5G based passive optical networks (PON) are expected as capable of the simultaneous provision of wired and wireless services for multi-users. In this paper, for the first time, we propose and demonstrate the simultaneous delivery of wired 4-pulse amplitude modulation (4-PAM) and wireless multi-sub-bands filter bank multicarrier (FBMC) signals in one wavelength using one laser source for the future 5G PON. The 4-PAM can be used in cost-efficient intensity modulation direct detection (IM/DD) systems and it provides the double bandwidth efficiency compared to conventional on-off keying (OOK). FBMC is considered as a potential candidate for future wireless 5G due to its high suppression for out of band emissions, which allows combining multiple sub-bands with very narrow band-gaps. Using multi-sub-bands with a narrow band gap, the overall transmission capacity can be increased. In the designed system, the composite wired 4-PAM and wireless multi-sub-bands FBMC signal is generated and transmitted with intensity modulation in optical line terminal (OLT). In the optical network unit (ONU) the wired and wireless signals from the received composite signal are extracted using an electrical square band-pass filter and separately demodulated using digital signal processing techniques. The designed 4-PAM has baseband bandwidth of 4.8 GHz and multi-subbands FBMC consists of 4 sub-bands of 500 MHz each, having very narrow inter-sub-bands gap of 488.28 kHz and the aggregate bandwidth of 2.0015 GHz. The bit error rate (BER) has been evaluated for the performance analysis of the 4-PAM and multi-sub-bands FBMC for two cases (a) separate transmission and (b) composite transmission.


2014 ◽  
Vol 631-632 ◽  
pp. 860-863 ◽  
Author(s):  
Xiao Xue Gong ◽  
Hui Li ◽  
Peng Chao Han ◽  
Yu Fang Zhou

Orthogonal Frequency Division Multiplexing (OFDM) has gained great attention in the next generation Long-Reach Passive Optical Network (LR-PON) due to its high spectrum efficiency, flexible resource allocation and natural compatibility with Digital Signal Processing (DSP)-based implementation. In this paper, we propose and demonstrate a 40Gbit/s direct-detection long reach OFDM-PON system for downstream transmission over 100km standard signal mode fiber (SSMF). By using a simple Least Square (LS) method for the channel estimation, our proposed system achieves high bit rate without the need for chromatic dispersion compensation.


2019 ◽  
Vol 40 (4) ◽  
pp. 369-377 ◽  
Author(s):  
Meenakshi Chakraborty ◽  
Taraprasad Chattopadhyay

Abstract In this paper, we have proposed and analyzed a novel cost-effective ultradense wavelength division multiplexed (UDWDM) passive optical network (PON) which uses phase modulation (PM) of the optical carriers in the optical line terminal (OLT) in order to achieve inherent noise immunity in the network. In the demodulation of the optical PM signal at the optical network unit (ONU), we have proposed to use a simple injection–locked Fabry–Perot (FP) laser diode (LD) for achieving PM to intensity modulation (IM) converter which is followed by a photodiode to recover the specific channel information. A detailed analysis of PM–IM conversion in an injection–locked FPLD has been carried out and the viability of the proposed scheme has been established. The proposed UDWDM–PON which is a broadband access network is cost-effective and long reach.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Ilavarasan Tamilarasan ◽  
Brindha Saminathan ◽  
Poongundran Selvaprabhu ◽  
Mugelan Ramakrishnan Kuppusamy

AbstractOrthogonal frequency division multiplexing (OFDM) is a special form of multicarrier (MC) modulation technique which is adopted in 4G mobile communication systems. The combination of OFDM with passive optical network (PON) architecture is highly desirable for design of flexible and energy efficient backhaul and backbone networks for 5G systems. An intensive mathematical model for linewidth analysis in OFDM based backhaul (BH) and backbone (BB) systems is proposed. The proposed mathematical model includes fiber dispersion, fiber nonlinear effects, amplified spontaneous emission (ASE) noise, transmitter and receiver noises. The impact of laser linewidth in the developed analytical model is analysed in terms phase rotation term (PRT) and inter-carrier interference (ICI) power. Further, the BER performance of the DD-OFDM system as a function of laser linewidth is also presented. The results of the analytical model solved using MATLAB is compared with virtual photonics integrated (VPI) based simulation results. The results of our proposed model suggest that DD-OFDM would perform better for lower linewidth in dispersion uncompensated (DUC) links and it has no impact on the dispersion compensated (DC) links for BB networks. In BH networks, the system performs better for lower linewidth in both DUC and DC links.


Sign in / Sign up

Export Citation Format

Share Document