optical network
Recently Published Documents


TOTAL DOCUMENTS

3693
(FIVE YEARS 678)

H-INDEX

52
(FIVE YEARS 8)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Ranbir Singh Mohal ◽  
Rajbir Kaur ◽  
Charanjit Singh

Abstract Long band (L-Band) passive optical networks (PONs) are attracting a lot of attention these days, thanks to rising capacity demands. Because of PONs requesting more and more channels, fault detection/monitoring is critical. Fault detection in the conventional band (C-Band) employing reflecting Fiber Bragg Gratings (FBGs) and a probe signal integrating an additional amplified spontaneous noise (ASEN) source has been frequently demonstrated. However, interference occurs when ASEN and transmitter signals are in the same wavelength band, and adding additional ASEN sources to the network raises the overall cost. So, in L-Band PONs, a cost-effective, low-complexity fault detection/monitoring system is required. Therefore, in this work, a fault detection/monitoring system for L-Band PON using C-Band ASEN from inline erbium doped fiber amplifier (EDFA) and dual purpose FBG, i.e. (1) ASEN reflection for fault monitoring and (2) dispersion compensation is proposed. A 4 × 10 Gbps L-Band PON is investigated over 40 km feeder fiber (FF) and 1 km drop fibers (DFs) that serve 32 optical network units (ONUs)/different input powers, dispersion values, and laser linewidths in terms of reflective power of FBGs, eye opening factor, and bit error rate (BER), respectively.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 431
Author(s):  
Martina Troscia ◽  
Andrea Sgambelluri ◽  
Francesco Paolucci ◽  
Piero Castoldi ◽  
Paolo Pagano ◽  
...  

Software Defined Networking represents a mature technology for the control of optical networks, though all open controller implementations present in the literature still lack the adequate level of maturity and completeness to be considered for (pre)-production network deployments. This work aims at experimenting on, assessing and discussing the use of the OneM2M open-source platform in the context of optical networks. Network elements and devices are implemented as IoT devices, and the control application is built on top of an OneM2M-compliant server. The work concretely addresses the scalability and flexibility performances of the proposed solution, accounting for the expected growth of optical networks. The two experiment scenarios show promising results and confirm that the OneM2M platform can be adopted in such a context, paving the way to other researches and studies.


2022 ◽  
Author(s):  
Shayan Mookherjee

We study how the performance and utility of high-bandwidth, energy-efficient communication networks can be improved by enabling programmability and user-defined tunability in the optical front-ends using silicon photonics. Summary of a Project Outcomes report of research funded by the U.S. National Science Foundation under Project Number 1525090 (Year 1).


Sign in / Sign up

Export Citation Format

Share Document