Separation and enrichment of semiconducting carbon nanotubes and its application to highly sensitive carbon nanotube gas sensor

Author(s):  
M. Fujioka ◽  
H. Watanabe ◽  
Y. Martin ◽  
M. Nakano ◽  
J. Suehiro
2007 ◽  
Vol 124-126 ◽  
pp. 1309-1312
Author(s):  
Nguyen Duc Hoa ◽  
Nguyen Van Quy ◽  
Gyu Seok Choi ◽  
You Suk Cho ◽  
Se Young Jeong ◽  
...  

A new type of gas sensor was realized by directly depositing carbon nanotube on nano channels of the anodic alumina oxide (AAO) fabricated on p-type silicon substrate. The carbon nanotubes were synthesized by thermal chemical vapor deposition at a very high temperature of 1200 oC to improve the crystallinity. The device fabrication process was also developed. The contact of carbon nanotubes and p-type Si substrate showed a Schottky behavior, and the Schottky barrier height increased with exposure to gases while the overall conductivity decreased. The sensors showed fast response and recovery to ammonia gas upon the filling (400 mTorr) and evacuation.


Author(s):  
Taajza Singleton ◽  
Lawrence Kulinsky

Abstract Carbon nanotubes (CNTs) have been implemented in the creation of many micro- and nano-devices due to their physical properties such as large volume-to-surface area as well as their high thermal and electrical conductivity. The paper describes a novel dielectrophoretic step-wise deposition of CNTs (that alternates deposition of CNTs and drying steps) between the interdigitated fingers of carbon electrodes. Multiphysics simulation illustrates the physics of CNT alignment along the electrical field lines that forms a basis for dielectrophoretic deposition of CNTs. This fabrication methodology resulted in the creation of a proof-of-concept nitrogen gas sensor.


2019 ◽  
Vol 30 (8) ◽  
pp. 1216-1224 ◽  
Author(s):  
Mohammad Charara ◽  
Mohammad Abshirini ◽  
Mrinal C Saha ◽  
M Cengiz Altan ◽  
Yingtao Liu

This article presents three-dimensional printed and highly sensitive polydimethylsiloxane/multi-walled carbon nanotube sensors for compressive strain and pressure measurements. An electrically conductive polydimethylsiloxane/multi-walled carbon nanotube nanocomposite is developed to three-dimensional print compression sensors in a freestanding and layer-by-layer manner. The dispersion of multi-walled carbon nanotubes in polydimethylsiloxane allows the uncured nanocomposite to stand freely without any support throughout the printing process. The cross section of the compression sensors is examined under scanning electron microscope to identify the microstructure of nanocomposites, revealing good dispersion of multi-walled carbon nanotubes within the polydimethylsiloxane matrix. The sensor’s sensitivity was characterized under cyclic compression loading at various max strains, showing an especially high sensitivity at lower strains. The sensing capability of the three-dimensional printed nanocomposites shows minimum variation at various applied strain rates, indicating its versatile potential in a wide range of applications. Cyclic tests under compressive loading for over 8 h demonstrate that the long-term sensing performance is consistent. Finally, in situ micromechanical compressive tests under scanning electron microscope validated the sensor’s piezoresistive mechanism, showing the rearrangement, reorientation, and bending of the multi-walled carbon nanotubes under compressive loads, were the main reasons that lead to the piezoresistive sensing capabilities in the three-dimensional printed nanocomposites.


2009 ◽  
Vol 1204 ◽  
Author(s):  
Letian Lin ◽  
Lu-Chang Qin ◽  
Sean Washburn ◽  
Scott Paulson

AbstractThe properties of a carbon nanotube (CNT), in particular a single-wall carbon nanotube (SWNT), are highly sensitive to the atomic structure of the nanotube described by its chirality (chiral indices). We have grown isolated SWNTs on a silicon substrate using chemical vapor deposition (CVD) and patterned sub-micron probes using electron beam lithography. The SWNT was exposed by etching the underlying substrate for transmission electron microscope (TEM) imaging and diffraction studies. For each individual SWNT, its electrical resistance was measured by the four-probe method at room temperature and the chiral indices of the same SWNT were determined by nano-beam electron diffraction. The contact resistances were reduced by annealing to typically 3-5 kΩ. We have measured the I-V curve and determined the chiral indices of each nanotube individually from four SWNTs selected randomly – two are metallic and two are semiconducting. We will present the electrical resistances in correlation with the carbon nanotube diameter as well as the band gap calculated from the determined chiral indices for the semiconducting carbon nanotubes. These experimental results are also discussed in connection with theoretical estimations.


Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13599-13606 ◽  
Author(s):  
Binghao Liang ◽  
Zhiqiang Lin ◽  
Wenjun Chen ◽  
Zhongfu He ◽  
Jing Zhong ◽  
...  

A highly stretchable and sensitive strain sensor based on a gradient carbon nanotube was developed. The strain sensors show an unprecedented combination of both high sensitivity (gauge factor = 13.5) and ultra-stretchability (>550%).


2013 ◽  
Vol 699 ◽  
pp. 915-920
Author(s):  
Hideaki Watanabe ◽  
Hiroki Komure ◽  
Michihiko Nakano ◽  
Junya Suehiro

Single-walled carbon nanotubes (SWCNTs) gas sensor has attracted a great deal of attention because of their remarkable properties. The sensor response is attribute to the semiconducting CNT whose electronic properties depend on its chirality. The authors have previously found that the sensor response increased by using separated semiconducting SWCNTs from a mixture with metallic one. Since the electronic structure (metallic or semiconducting) of CNTs is governed by their chirality, a chirality-selective fabrication of CNT gas sensor is essential to improve their performance. In this study, we proposed chirality-based separation of semiconducting SWCNTs by using spin-column chromatography. Pristine CNT suspension was separated into three fractions that had different chiralities of semiconducting SWCNTs. Separated semiconducting CNTs of each fraction were used for fabrication of three CNT gas sensors by dielectrophoresis. Comparison of these sensor responses to NO2 revealed that sensor response depended on the chirality.


2015 ◽  
Vol 220 ◽  
pp. 1288-1296 ◽  
Author(s):  
Ahmed Abdelhalim ◽  
Maximilian Winkler ◽  
Florin Loghin ◽  
Christopher Zeiser ◽  
Paolo Lugli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document