strain sensors
Recently Published Documents


TOTAL DOCUMENTS

1859
(FIVE YEARS 754)

H-INDEX

80
(FIVE YEARS 26)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 630
Author(s):  
Ji-Yeon Choy ◽  
Eun-Bee Jo ◽  
Chang-Joo Yim ◽  
Hae-Kyung Youi ◽  
Jung-Hoon Hwang ◽  
...  

Research on stretchable strain sensors is actively conducted due to increasing interest in wearable devices. However, typical studies have focused on improving the elasticity of the electrode. Therefore, methods of directly connecting wire or attaching conductive tape to materials to detect deformation have been used to evaluate the performance of strain sensors. Polyaniline (PANI), a p-type semiconductive polymer, has been widely used for stretchable electrodes. However, conventional procedures have limitations in determining an appropriate metal for ohmic contact with PANI. Materials that are generally used for connection with PANI form an undesirable metal-semiconductor junction and have significant contact resistance. Hence, they degrade sensor performance. This study secured ohmic contact by adapting Au thin film as the metal contact layer (the MCL), with lower contact resistance and a larger work function than PANI. Additionally, we presented a buffer layer using hard polydimethylsiloxane (PDMS) and structured it into a dumbbell shape to protect the metal from deformation. As a result, we enhanced steadiness and repeatability up to 50% strain by comparing the gauge factors and the relative resistance changes. Consequently, adapting structural methods (the MCL and the dumbbell shape) to a device can result in strain sensors with promising stability, as well as high stretchability.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 119
Author(s):  
Farid Sayar Irani ◽  
Ali Hosseinpour Shafaghi ◽  
Melih Can Tasdelen ◽  
Tugce Delipinar ◽  
Ceyda Elcin Kaya ◽  
...  

High accuracy measurement of mechanical strain is critical and broadly practiced in several application areas including structural health monitoring, industrial process control, manufacturing, avionics and the automotive industry, to name a few. Strain sensors, otherwise known as strain gauges, are fueled by various nanomaterials, among which graphene has attracted great interest in recent years, due to its unique electro-mechanical characteristics. Graphene shows not only exceptional physical properties but also has remarkable mechanical properties, such as piezoresistivity, which makes it a perfect candidate for strain sensing applications. In the present review, we provide an in-depth overview of the latest studies focusing on graphene and its strain sensing mechanism along with various applications. We start by providing a description of the fundamental properties, synthesis techniques and characterization methods of graphene, and then build forward to the discussion of numerous types of graphene-based strain sensors with side-by-side tabular comparison in terms of figures-of-merit, including strain range and sensitivity, otherwise referred to as the gauge factor. We demonstrate the material synthesis, device fabrication and integration challenges for researchers to achieve both wide strain range and high sensitivity in graphene-based strain sensors. Last of all, several applications of graphene-based strain sensors for different purposes are described. All in all, the evolutionary process of graphene-based strain sensors in recent years, as well as the upcoming challenges and future directions for emerging studies are highlighted.


2022 ◽  
pp. 2102306
Author(s):  
Guoqing Lin ◽  
Muqing Si ◽  
Longgang Wang ◽  
Shuxin Wei ◽  
Wei Lu ◽  
...  

Author(s):  
Ya-Ru Ding ◽  
Chao-Hua Xue ◽  
Xiao-Jing Guo ◽  
Xue Wang ◽  
Shun-Tian Jia ◽  
...  

NANO ◽  
2022 ◽  
Author(s):  
Delin Chen ◽  
Hongmei Zhao ◽  
Weidong Yang ◽  
Dawei Wang ◽  
Xiaowei Huang ◽  
...  

Flexible/stretchable strain sensors have attracted much attention due to their advantages for human-computer interaction, smart wearable and human monitoring. However, there are still great challenges on gaining super durability, quick response, and wide sensing range. This paper provides a simple process to obtain a sensor which is based on graphene (GR)/carbon nanotubes (CNTs) and Ecoflex hybrid, which demonstrates superb endurance (over 1000 cycles at 100% strain), remarkable sensitivity (strain over 125% sensitivity up to 20) and wide sensing range (175%). All results indicate that it is capable for human movement monitoring, such as finger and knee bending and pulse beat. Most importantly, it can be used as a warning function for the night cyclist’s ride. This research provides the feasibility of using this sensor for practical applications.


2022 ◽  
Vol 2 ◽  
Author(s):  
Yanyan Fan ◽  
Hongbin Zhao ◽  
Yifan Yang ◽  
Yi Yang ◽  
Tianling Ren ◽  
...  

Graphene-based stretchable and flexible strain sensors are one of the promising “bridges” to the biomedical realm. However, enhancing graphene-based wearable strain sensors to meet the demand of high sensitivity, broad sensing range, and recoverable structure deformation simultaneously is still a great challenge. In this work, through structural design, we fabricated a simple Ecoflex/Overlapping Graphene/Ecoflex (EOGE) strain sensor by encapsulating a graphene sensing element on polymer Ecoflex substrates using a drop-casting method. The EOGE strain sensor can detect stretching with high sensitivity, a maximum gauge factor of 715 with a wide strain range up to 57%, and adequate reliability and stability over 1,000 cycles for stretching. Moreover, the EOGE strain sensor shows recoverable structure deformation, and the sensor has a steady response in the frequency disturbance test. The good property of the strain sensor is attributed to the resistance variation induced by the overlap and crack structure of graphene by structural design. The vibrations caused by sound and various body movements have been thoroughly detected, which exhibited that the EOGE strain sensor is a promising candidate for wearable biomedical electronic applications.


Sign in / Sign up

Export Citation Format

Share Document