Forecasting of wind speed based on wavelet analysis and support vector machine

Author(s):  
Zhou Songlin ◽  
Mao Meiqin ◽  
Liuchen chang
2019 ◽  
Vol 44 (3) ◽  
pp. 266-281 ◽  
Author(s):  
Zhongda Tian ◽  
Yi Ren ◽  
Gang Wang

Wind speed prediction is an important technology in the wind power field; however, because of their chaotic nature, predicting wind speed accurately is difficult. Aims at this challenge, a backtracking search optimization–based least squares support vector machine model is proposed for short-term wind speed prediction. In this article, the least squares support vector machine is chosen as the short-term wind speed prediction model and backtracking search optimization algorithm is used to optimize the important parameters which influence the least squares support vector machine regression model. Furthermore, the optimal parameters of the model are obtained, and the short-term wind speed prediction model of least squares support vector machine is established through parameter optimization. For time-varying systems similar to short-term wind speed time series, a model updating method based on prediction error accuracy combined with sliding window strategy is proposed. When the prediction model does not match the actual short-term wind model, least squares support vector machine trains and re-establishes. This model updating method avoids the mismatch problem between prediction model and actual wind speed data. The actual collected short-term wind speed time series is used as the research object. Multi-step prediction simulation of short-term wind speed is carried out. The simulation results show that backtracking search optimization algorithm–based least squares support vector machine model has higher prediction accuracy and reliability for the short-term wind speed. At the same time, the prediction performance indicators are also improved. The prediction result is that root mean square error is 0.1248, mean absolute error is 0.1374, mean absolute percentile error is 0.1589% and R2 is 0.9648. When the short-term wind speed varies from 0 to 4 m/s, the average value of absolute prediction error is 0.1113 m/s, and average value of absolute relative prediction error is 8.7111%. The proposed prediction model in this article has high engineering application value.


2014 ◽  
Vol 511-512 ◽  
pp. 927-930
Author(s):  
Shuai Zhang ◽  
Hai Rui Wang ◽  
Jin Huang ◽  
He Liu

In the paper, the forecast problems of wind speed are considered. In order to enhance the redaction accuracy of the wind speed, this article is about a research on particle swarm optimization least square support vector machine for short-term wind speed prediction (PSO-LS-SVM). Firstly, the prediction models are built by using least square support vector machine based on particle swarm optimization, this model is used to predict the wind speed next 48 hours. In order to further improve the prediction accuracy, on this basis, introduction of the offset optimization method. Finally large amount of experiments and measurement data comparison compensation verify the effectiveness and feasibility of the research on particle swarm optimization least square support vector machine for short-term wind speed prediction, Thereby reducing the short-term wind speed prediction error, very broad application prospects.


2020 ◽  
Vol 37 (5) ◽  
pp. 382-392
Author(s):  
Jingwei Feng ◽  
Lijun Pan ◽  
Binhua Cui ◽  
Yabing Sun ◽  
Aiyong Zhang ◽  
...  

2012 ◽  
Vol 608-609 ◽  
pp. 814-817
Author(s):  
Xiao Fu ◽  
Dong Xiang Jiang

The power fluctuation of wind turbine often causes serious problems in electricity grids. Therefore, short term prediction of wind speed and power as to eliminate the uncertainty determined crucially the development of wind energy. Compared with physical methods, support vector machine (SVM) as an intelligent artificial method is more general and shows better nonlinear modeling capacity. A model which combined fuzzy information granulation with SVM method was developed and implemented in short term future trend prediction of wind speed and power. The data, including the daily wind speed and power, from a wind farm in northern China were used to evaluate the proposed method. The prediction results show that the proposed model performs better and more stable than the standard SVM model when apply them into the same data set.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6319
Author(s):  
Chia-Sheng Tu ◽  
Chih-Ming Hong ◽  
Hsi-Shan Huang ◽  
Chiung-Hsing Chen

This paper presents a short-term wind power forecasting model for the next day based on historical marine weather and corresponding wind power output data. Due the large amount of historical marine weather and wind power data, we divided the data into clusters using the data regression (DR) algorithm to get meaningful training data, so as to reduce the number of modeling data and improve the efficiency of computing. The regression model was constructed based on the principle of the least squares support vector machine (LSSVM). We carried out wind speed forecasting for one hour and one day and used the correlation between marine wind speed and the corresponding wind power regression model to realize an indirect wind power forecasting model. Proper parameter settings for LSSVM are important to ensure its efficiency and accuracy. In this paper, we used an enhanced bee swarm optimization (EBSO) to perform the parameter optimization for LSSVM, which not only improved the forecast model availability, but also improved the forecasting accuracy.


Sign in / Sign up

Export Citation Format

Share Document