The complexity and entropy of Turing machines

Author(s):  
P.A. Dufort ◽  
C.J. Lumsden
Keyword(s):  
Author(s):  
Raymundo Morado ◽  
Francisco Hernández-Quiroz

Turing machines as a model of intelligence can be motivated under some assumptions, both mathematical and philosophical. Some of these are about the possibility, the necessity, and the limits of representing problem solving by mechanical means. The assumptions about representation that we consider in this paper are related to information representability and availability, processing as solving, nonessentiality of complexity issues, and finiteness, discreteness and sequentiality of the representation. We discuss these assumptions and particularly something that might happen if they were to be rejected or weakened. Tinkering with these assumptions sheds light on the import of alternative computational models.


2018 ◽  
Author(s):  
Rajendra K. Bera

It now appears that quantum computers are poised to enter the world of computing and establish its dominance, especially, in the cloud. Turing machines (classical computers) tied to the laws of classical physics will not vanish from our lives but begin to play a subordinate role to quantum computers tied to the enigmatic laws of quantum physics that deal with such non-intuitive phenomena as superposition, entanglement, collapse of the wave function, and teleportation, all occurring in Hilbert space. The aim of this 3-part paper is to introduce the readers to a core set of quantum algorithms based on the postulates of quantum mechanics, and reveal the amazing power of quantum computing.


2020 ◽  
Vol 46 (6) ◽  
pp. 428-432
Author(s):  
S. S. Marchenkov ◽  
S. D. Makeev
Keyword(s):  

1992 ◽  
Vol 44 (2) ◽  
pp. 272-286 ◽  
Author(s):  
Johannes Kobler ◽  
Uwe Schïng ◽  
Seinosuke Toda ◽  
Jacobo Torán
Keyword(s):  

2021 ◽  
Vol 82 (2) ◽  
Author(s):  
Robin Hirsch ◽  
Jaš Šemrl

AbstractThe motivation for using demonic calculus for binary relations stems from the behaviour of demonic turing machines, when modelled relationally. Relational composition (; ) models sequential runs of two programs and demonic refinement ($$\sqsubseteq $$ ⊑ ) arises from the partial order given by modeling demonic choice ($$\sqcup $$ ⊔ ) of programs (see below for the formal relational definitions). We prove that the class $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) of abstract $$(\le , \circ )$$ ( ≤ , ∘ ) structures isomorphic to a set of binary relations ordered by demonic refinement with composition cannot be axiomatised by any finite set of first-order $$(\le , \circ )$$ ( ≤ , ∘ ) formulas. We provide a fairly simple, infinite, recursive axiomatisation that defines $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) . We prove that a finite representable $$(\le , \circ )$$ ( ≤ , ∘ ) structure has a representation over a finite base. This appears to be the first example of a signature for binary relations with composition where the representation class is non-finitely axiomatisable, but where the finite representation property holds for finite structures.


2021 ◽  
Vol 58 (4) ◽  
pp. 377-396
Author(s):  
Kenichi Morita

Sign in / Sign up

Export Citation Format

Share Document