System level cost and environmental performance of integrated energy systems: An assessment of low-carbon scenarios for the UK

Author(s):  
Han Wang ◽  
Adrien Saint-Pierre ◽  
Pierluigi Mancarella
2020 ◽  
Vol 197 ◽  
pp. 01007
Author(s):  
Francesco Lonis ◽  
Vittorio Tola ◽  
Giorgio Cau

To guarantee a smooth transition to a clean and low-carbon society without abandoning all of a sudden liquid fuels and products derived from fossil resources, power-to-liquids processes can be used to exploit an excess of renewable energy, producing methanol and dimethyl ether (DME) from the conversion of hydrogen and recycled CO2. Such a system could behave as an energy storage system, and/or a source of fuels and chemicals for a variety of applications in several industrial sectors. This paper concerns the conceptual design, performance analysis and comparison of small-scale decentralised integrated energy systems to produce methanol and DME from renewable hydrogen and captured CO2. Renewable hydrogen is produced exploiting excess RES. Water electrolysis is carried out considering two different technologies alternatively: commercially mature low temperature alkaline electrolysers (AEL) and innovative high temperature solid oxide electrolysers (SOEC). A first conversion of hydrogen and CO2 takes place in a catalytic reactor where methanol is synthesised through the hydrogenation process. Methanol is then purified in a distillation column. Depending on the final application, methanol can be further converted into DME through catalytic dehydration in another catalytic reactor. The chemical (either methanol or DME) is stored at ambient conditions and used as necessary. To predict the performance of the main components and of the overall system, numerical simulation models were developed using the software Aspen Plus. The performance and efficiencies of each section and of the overall systems were evaluated through extensive mass and energy balances. Globally, the overall power-to-liquids efficiency was found to be above 0.55 for all the different configurations, both considering a powerto-methanol or a power-to-DME process.


2016 ◽  
Vol 192 ◽  
pp. 27-35 ◽  
Author(s):  
B. Adderley ◽  
J. Carey ◽  
J. Gibbins ◽  
M. Lucquiaud ◽  
R. Smith

Post-combustion CO2 capture (PCC) can be achieved using a variety of technologies. Importantly it is applicable to a wide range of processes and may also be retrofitted in certain cases. This paper covers the use of PCC for low carbon power generation from new natural gas combined cycle (NGCC) plants that are expected to be built in the UK in the 2020s and 2030s and that will run into the 2050s. Costs appear potentially comparable with other low carbon and controllable generation sources such as nuclear or renewables plus storage, especially with the lower gas prices that can be expected in a carbon-constrained world. Non-fuel cost reduction is still, however, desirable and, since CO2 capture is a new application, significant potential is likely to exist. For the NGCC+PCC examples shown in this paper, moving from ‘first of a kind’ (FOAK) to ‘nth of a kind’ (NOAK) gives significant improvements through both reduced financing costs and capital cost reductions. To achieve this the main emphasis needs to be on ‘commercial readiness’, rather than on system-level ‘technical readiness’, and on improvements through innovation activities, supported by underpinning research, that develop novel sub-processes; this will also maintain NOAK status for cost-effective financing. Feasible reductions in the energy penalty for PCC capture have much less impact, reflecting the inherently high levels of efficiency for modern NGCC+PCC plants.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 448 ◽  
Author(s):  
Zhiyuan Liu ◽  
Hang Yu ◽  
Rui Liu ◽  
Meng Wang ◽  
Chaoen Li

The analysis of energy configuration in the planning of data-center-park-integrated energy systems (DCP-IESs) has become an enormous challenge, owing to multi-energy complementarity, energy cascade use, and energy security. In this study, a configuration model of DCP-IESs was established to obtain the economic and low-carbon energy uses of the data centers, based on mixed integer linear programming. In the model, carbon emissions were converted to economic indicators through carbon pricing. Then, the configuration model was modified according to the security of the proposed device switching logic, and the Markov-based reliability estimation method was used to ensure the redundant design of the configuration. Using the new energy configuration method, the DCP-IES configuration scheme could be obtained under economical, low-carbon, and high reliability conditions. A data center park in Shanghai was selected as a case study, and the results are as follows: it will only take 2.88 years for the economics of DCP-IES to reach those of traditional data center energy systems. Additionally, the use of configuration model in DCP-IES would result in a reduction in annual carbon emissions of 39,323 tons, with a power usage effectiveness of 1.388, whereas an increase in reliability results in an increasingly faster increase in the initial investment cost.


Sign in / Sign up

Export Citation Format

Share Document