Machine Learning Based High Accuracy Indoor Visible Light Location Algorithm

Author(s):  
Xiaoji Li ◽  
Yanping Cao ◽  
Chen Chen
Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3023
Author(s):  
Abdulrahman A. Mahmoud ◽  
Zahir Ahmad ◽  
Uche Onyekpe ◽  
Yousef Almadani ◽  
Muhammad Ijaz ◽  
...  

This paper proposes a 2-D vehicular visible light positioning (VLP) system using existing streetlights and diversity receivers. Due to the linear arrangement of streetlights, traditional positioning techniques based on triangulation or similar algorithms fail. Thus, in this work, we propose a spatial and angular diversity receiver with machine learning (ML) techniques for VLP. It is shown that a multi-layer neural network (NN) with the proposed receiver scheme outperforms other ML algorithms and can offer high accuracy with root mean square (RMS) error of 0.22 m and 0.14 m during the day and night time, respectively. Furthermore, the NN shows robustness in VLP across different weather conditions and road scenarios. The results show that only dense fog deteriorates the performance of the system due to reduced visibility across the road.


Author(s):  
Jonas Austerjost ◽  
Robert Söldner ◽  
Christoffer Edlund ◽  
Johan Trygg ◽  
David Pollard ◽  
...  

Machine vision is a powerful technology that has become increasingly popular and accurate during the last decade due to rapid advances in the field of machine learning. The majority of machine vision applications are currently found in consumer electronics, automotive applications, and quality control, yet the potential for bioprocessing applications is tremendous. For instance, detecting and controlling foam emergence is important for all upstream bioprocesses, but the lack of robust foam sensing often leads to batch failures from foam-outs or overaddition of antifoam agents. Here, we report a new low-cost, flexible, and reliable foam sensor concept for bioreactor applications. The concept applies convolutional neural networks (CNNs), a state-of-the-art machine learning system for image processing. The implemented method shows high accuracy for both binary foam detection (foam/no foam) and fine-grained classification of foam levels.


Optik ◽  
2021 ◽  
pp. 166853
Author(s):  
Yong Chen ◽  
Zimiao Ren ◽  
Zhaozhong Han ◽  
Huanlin Liu ◽  
Qi-xiang Shen ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Hao Zhou ◽  
Ya-Juan Feng ◽  
Chao Wang ◽  
Teng Huang ◽  
Yi-Rong Liu ◽  
...  

Water, the most important molecule on the Earth, possesses many essential and unique physical properties that are far from completely understood, partly due to serious difficulties in identifying the precise...


2019 ◽  
Vol 9 (6) ◽  
pp. 1048 ◽  
Author(s):  
Huy Tran ◽  
Cheolkeun Ha

Recently, indoor positioning systems have attracted a great deal of research attention, as they have a variety of applications in the fields of science and industry. In this study, we propose an innovative and easily implemented solution for indoor positioning. The solution is based on an indoor visible light positioning system and dual-function machine learning (ML) algorithms. Our solution increases positioning accuracy under the negative effect of multipath reflections and decreases the computational time for ML algorithms. Initially, we perform a noise reduction process to eliminate low-intensity reflective signals and minimize noise. Then, we divide the floor of the room into two separate areas using the ML classification function. This significantly reduces the computational time and partially improves the positioning accuracy of our system. Finally, the regression function of those ML algorithms is applied to predict the location of the optical receiver. By using extensive computer simulations, we have demonstrated that the execution time required by certain dual-function algorithms to determine indoor positioning is decreased after area division and noise reduction have been applied. In the best case, the proposed solution took 78.26% less time and provided a 52.55% improvement in positioning accuracy.


Author(s):  
Anna Evgenievna Kharitonova ◽  
Alina Alekseevna Sundupey ◽  
Svetlana Skachkova

The article provides a comparative analysis of the results of the Russian Agricultural Census of 2006 and 2016. As a result, there is a decrease in the number of agricultural producers, a decrease in the size of agricultural land and equipment in organizations. Against this background, one can see an increase in the concentration of production in both crop and livestock production. Machine learning models have been built to classify subsidy organizations using Python libraries. The accuracy of the constructed models was up to 86 %, which proves the possibility of their use. In the future, the use of machine learning methods will reduce the number of Russian agricultural census indicators and classify organizations with high accuracy according to qualitative characteristics.


Sign in / Sign up

Export Citation Format

Share Document